Split Nano Luciferase-based Assay to Measure Assembly of Japanese Encephalitis Virus.

Bio Protoc

Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki-shi, Aomori, Japan.

Published: May 2020

Cells infected with flavivirus release various forms of infectious and non-infectious particles as products and by-products. Comprehensive profiling of the released particles by density gradient centrifugation is informative for understanding viral particle assembly. However, it is difficult to detect low-abundance minor particles in such analyses. We developed a method for viral particle analysis that integrates a high-sensitivity split luciferase system and density gradient centrifugation. This protocol enables high-resolution profiling of particles produced by cells expressing Japanese encephalitis virus factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842715PMC
http://dx.doi.org/10.21769/BioProtoc.3606DOI Listing

Publication Analysis

Top Keywords

japanese encephalitis
8
encephalitis virus
8
density gradient
8
gradient centrifugation
8
viral particle
8
split nano
4
nano luciferase-based
4
luciferase-based assay
4
assay measure
4
measure assembly
4

Similar Publications

Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a medically important mosquito-borne orthoflavivirus, but no vaccines are currently available to prevent ZIKV-associated disease. In this study, we compared three recombinant chimeric viruses developed as candidate vaccine prototypes (rJEV/ZIKV, rJEV/ZIKV, and rJEV/ZIKV), in which the two neutralizing antibody-inducing prM and E genes from each of three genetically distinct ZIKV strains were used to replace the corresponding genes of the clinically proven live-attenuated Japanese encephalitis virus vaccine SA-14-2 (rJEV). In WHO-certified Vero cells (a cell line suitable for vaccine production), rJEV/ZIKV exhibited the slowest viral growth, formed the smallest plaques, and displayed a unique protein expression profile with the highest ratio of prM to cleaved M when compared to the other two chimeric viruses, rJEV/ZIKV and rJEV/ZIKV, as well as their vector, rJEV.

View Article and Find Full Text PDF

T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is a neurotropic zoonotic pathogen that poses a serious threat to public health. Currently, there is no specific therapeutic agent available for JEV infection, primarily due to the complexity of its infection mechanism and pathogenesis. Extracellular vesicles (EVs) have been known to play an important role in viral infection, but their specific functions in JEV infection remain unknown.

View Article and Find Full Text PDF

Background: Acute encephalopathy is a severe condition predominantly affecting children with viral infections. The purpose of this study was to elucidate the epidemiology, treatment, and management of acute encephalopathy. The study also aimed to understand how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected epidemiological trends.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!