Determination of Microtubule Lattice Parameters from Cryo-electron Microscope Images Using TubuleJ.

Bio Protoc

Univ Rennes, CNRS, IGDR (Institut de genetique et developpement de Rennes) - UMR 6290, F-35000 Rennes, France.

Published: November 2020

The α-β tubulin heterodimer undergoes subtle conformational changes during microtubule assembly. These can be modulated by external factors, whose effects on microtubule structure can be characterized on 2D views obtained by cryo-electron microscopy. Analysis of microtubule images is facilitated if they are straight enough to interpret and filter their image Fourier transform, which provide useful information concerning the arrangement of tubulin molecules inside the microtubule lattice. Here, we describe the use of the TubuleJ software to straighten microtubules and determine their lattice parameters. Basic 3D reconstructions can be performed to evaluate the relevance of these parameters. This approach can be used to analyze the effects of nucleotide analogues, drugs or MAPs on microtubule structure, or to select microtubule images prior to high-resolution 3D reconstructions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842294PMC
http://dx.doi.org/10.21769/BioProtoc.3814DOI Listing

Publication Analysis

Top Keywords

microtubule lattice
8
lattice parameters
8
microtubule structure
8
microtubule images
8
microtubule
6
determination microtubule
4
parameters cryo-electron
4
cryo-electron microscope
4
microscope images
4
images tubulej
4

Similar Publications

Structure of blood cell-specific tubulin and demonstration of dimer spacing compaction in a single protofilament.

J Biol Chem

December 2024

Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:

Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the post-translational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood.

View Article and Find Full Text PDF
Article Synopsis
  • The chapter explains how lattice light-sheet microscopy (LLSM) enables detailed tracking of microtubule growth during cell division, using a special protein marker for precision.
  • It outlines statistical methods for analyzing the complex three-dimensional data collected from this imaging technology.
  • The discussion also includes future possibilities for improving the analysis of large-scale image datasets in biological research.
View Article and Find Full Text PDF

Microtubules (MTs) are dynamic cytoskeletal polymers essential for mediating fundamental cellular processes, including cell division, intracellular transport, and cell shape maintenance. Understanding the arrangement of tubulin heterodimers within MTs is key to their function. Using frequency modulation atomic force microscopy (FM-AFM) and simulations, we revealed the submolecular arrangement of α- and β-tubulin subunits on the inner MT surface.

View Article and Find Full Text PDF

α-tubulin detyrosination fine-tunes kinetochore-microtubule attachments.

Nat Commun

November 2024

i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.

Post-translational cycles of α-tubulin detyrosination and tyrosination generate microtubule diversity, the cellular functions of which remain largely unknown. Here we show that α-tubulin detyrosination regulates kinetochore-microtubule attachments to ensure normal chromosome oscillations and timely anaphase onset during mitosis. Remarkably, detyrosinated α-tubulin levels near kinetochore microtubule plus-ends depend on the direction of chromosome motion during metaphase.

View Article and Find Full Text PDF
Article Synopsis
  • Most vertebrate spindles utilize branching microtubule nucleation, where new microtubules form alongside existing ones.
  • The study highlights the role of hepatoma up-regulated protein (HURP) in this process, showing it is essential for RanGTP-induced microtubule branching in Xenopus egg extract.
  • HURP stabilizes the microtubule structure and shifts its function toward facilitating branching by localizing to TPX2 condensates, which are crucial for spindle assembly, supported by high-resolution cryo-EM imaging of HURP on microtubules.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!