Buoyant Density Fractionation of Small Extracellular Vesicle Sub-populations Derived from Mammalian Cells.

Bio Protoc

Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, United States.

Published: August 2020

Small extracellular vesicles (sEVs) encompass a variety of distinct vesicles that are secreted to the extracellular space. Many methodologies currently used for EV isolation (, differential ultracentrifugation concluding in a high-speed pellet, precipitation by macromolecular crowding agents or size excusion chromatography-SEC) do not fractionate distinct sEV sub-populations. Samples obtained by the aforementioned methods are usually used for characterization and physiological studies. However the fraction that contains the molecule of interest or is the carrier of a specific activity is unknown. Therefore isolating distinct sEV sub-populations is critical to understand EV function. The goal of this procedure is to purify distinct sEV sub-populations based on slight differences in their buoyant density. Moreover, this technique also allows sEVs purification from vesicle-free RNA-protein complexes co-isolating in the high-speed pellet or by the use of crowding agents. This protocol describes cultivation of mammalian cells for sEV collection, sEV sedimentation, buoyant density fractionation of sEV sub-populations and immunoblots for sEV markers. This protocol can be used to fractionate distinct sEV sub-populations produced by a variety of mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842712PMC
http://dx.doi.org/10.21769/BioProtoc.3706DOI Listing

Publication Analysis

Top Keywords

sev sub-populations
20
distinct sev
16
buoyant density
12
mammalian cells
12
density fractionation
8
small extracellular
8
high-speed pellet
8
crowding agents
8
fractionate distinct
8
sev
8

Similar Publications

Article Synopsis
  • Small extracellular vesicles (sEVs) are tiny vesicles (30-150nm) released by cells, important for diagnosing and treating diseases, with varied biological compositions influencing their functions.
  • The study combined surface-enhanced Raman spectroscopy (SERS) and machine learning to analyze individual sEVs, revealing that specific spectral features (biomolecular "fingerprints") correspond to the vesicles' biomolecular makeup.
  • The findings suggest that size-based isolation methods effectively yield sEVs with similar biochemical properties, enabling better differentiation among sub-populations, as over 84% of vesicles in the same size group exhibited distinct SERS features.
View Article and Find Full Text PDF

Multi-marker profiling of extracellular vesicles using streaming current and sequential electrostatic labeling.

Biosens Bioelectron

May 2023

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden. Electronic address:

High heterogeneity in the membrane protein expression of small extracellular vesicles (sEVs) means that bulk methods relying on antibody-based capture for expression analysis have a drawback that each type of antibody may capture a different sub-population. An improved approach is to capture a representative sEV population, without any bias, and then perform a multiplexed protein expression analysis on this population. However, such a possibility has been largely limited to fluorescence-based methods.

View Article and Find Full Text PDF

Buoyant Density Fractionation of Small Extracellular Vesicle Sub-populations Derived from Mammalian Cells.

Bio Protoc

August 2020

Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, United States.

Small extracellular vesicles (sEVs) encompass a variety of distinct vesicles that are secreted to the extracellular space. Many methodologies currently used for EV isolation (, differential ultracentrifugation concluding in a high-speed pellet, precipitation by macromolecular crowding agents or size excusion chromatography-SEC) do not fractionate distinct sEV sub-populations. Samples obtained by the aforementioned methods are usually used for characterization and physiological studies.

View Article and Find Full Text PDF

Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!