Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives.

Front Bioeng Biotechnol

School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom.

Published: February 2021

Surfactants are a group of amphiphilic chemical compounds (i.e., having both hydrophobic and hydrophilic domains) that form an indispensable component in almost every sector of modern industry. Their significance is evidenced from the enormous volumes that are used and wide diversity of applications they are used in, ranging from food and beverage, agriculture, public health, healthcare/medicine, textiles, and bioremediation. A major drive in recent decades has been toward the discovery of surfactants from biological/natural sources-namely bio-surfactants-as most surfactants that are used today for industrial applications are synthetically-manufactured via organo-chemical synthesis using petrochemicals as precursors. This is problematic, not only because they are derived from non-renewable resources, but also because of their environmental incompatibility and potential toxicological effects to humans and other organisms. This is timely as one of today's key challenges is to reduce our reliance on fossil fuels (oil, coal, gas) and to move toward using renewable and sustainable sources. Considering the enormous genetic diversity that microorganisms possess, they offer considerable promise in producing novel types of biosurfactants for replacing those that are produced from organo-chemical synthesis, and the marine environment offers enormous potential in this respect. In this review, we begin with an overview of the different types of microbial-produced biosurfactants and their applications. The remainder of this review discusses the current state of knowledge and trends in the usage of biosurfactants by the Oil and Gas industry for enhancing oil recovery from exhausted oil fields and as dispersants for combatting oil spills.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917263PMC
http://dx.doi.org/10.3389/fbioe.2021.626639DOI Listing

Publication Analysis

Top Keywords

biosurfactants applications
8
oil gas
8
gas industry
8
current state
8
state knowledge
8
organo-chemical synthesis
8
oil
6
biosurfactants
4
applications oil
4
industry current
4

Similar Publications

New Insights on Strain 1B Surface-Active Biomolecules: Gordofactin Properties.

Molecules

December 2024

Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.

Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.

View Article and Find Full Text PDF

Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids.

View Article and Find Full Text PDF

Production and Optimization of Biosurfactant Properties Using and Licuri Oil ().

Foods

December 2024

Centro de Tecnologia e Geociências, Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, n. 1235, Cidade Universitária, Recife 50670-901, PE, Brazil.

Optimizing biosurfactant (BS) production is key for sustainable industrial applications. This study investigated BS synthesis by using licuri oil, a renewable carbon source rich in medium-chain fatty acids. Process optimization was conducted via central composite design (CCD), adjusting concentrations of licuri oil, glucose, NHNO, and yeast extract.

View Article and Find Full Text PDF

Biosurfactants: A review of different strategies for economical production, their applications and recent advancements.

Adv Colloid Interface Sci

January 2025

Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India. Electronic address:

Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost.

View Article and Find Full Text PDF
Article Synopsis
  • Bile salts act as biosurfactants in the gastrointestinal tract, helping to emulsify and absorb fat-soluble nutrients and drugs.
  • The study utilized giant unilamellar vesicles (GUVs) to investigate the permeation behavior of bile salts and their mixed micelles, using sodium cholate (NaC) and various lipophilic substances.
  • Findings showed that below the critical micelle concentration (CMC), NaC causes endocytic changes in GUVs, while above the CMC, mixed micelles interact with the membrane differently, forming aggregates that migrate into the GUV, with variations observed depending on the type of lipophilic component used.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!