Green synthesis of zinc oxide nanoparticles using leaf extracts of and evaluation of their anticancer property in A549 cell lines.

Biotechnol Rep (Amst)

Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, 620 024, India.

Published: March 2021

In 21 st century, nanomedicine has turned out to be an emergent modulus operation for the diagnosis and treatment for cancer. The current study includes the Green synthesis of zinc oxide nanoparticles (ZnO NPs) from the leaves of and interpretation of its anticancer activity. Synthesized ZnO NPs were investigated by UV-vis, FTIR, particle size analysis, SEM, XRD and its anticancer activity using A549 cell lines. The UV-vis and particle size confirmed the developed ZnO NPs are in nanoscale. The FTIR studies confirmed the presence of various functional groups. SEM and XRD pictures confirmed the partial crystal spherical shape and wurtzite crystal nature. The cytotoxicity results pointed out the enhanced cytotoxic effect of the synthesized ZnO NPs. This is the first attempt of facilitated synthesis of ZnO NPs as anticancer agents and may subsequently be potential chemopreventive agent against other cancer treatment in future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896141PMC
http://dx.doi.org/10.1016/j.btre.2021.e00595DOI Listing

Publication Analysis

Top Keywords

zno nps
20
green synthesis
8
synthesis zinc
8
zinc oxide
8
oxide nanoparticles
8
a549 cell
8
cell lines
8
anticancer activity
8
synthesized zno
8
particle size
8

Similar Publications

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!