Background: Hyperosmosis stress (HS) was a key pathological factor in the development of dry eye disease (DED). Nicotinamide mononucleotide (NMN) demonstrated protective effects in the corneal damage, however, its role in the HS-induced DED remained unclear.
Methods: A NaCl based HS in-vitro model (500 mOsm) was generated and used in a co-culture system including corneal epithelial cells (CEC) and macrophage cell line RAW264.7. The effect of NMN on NAD+ metabolism and the expression of HS biomarker, tonicity-responsive element binding protein (TonEBP), was studied in the CEC. The cellular activity, including cell viability, apoptosis status and lactate dehydrogenase (LDH) release through trypan blue staining, flow cytometry and LDH assay, respectively. The mitochondrial membrane potential (MMP) assay would be conducted using the JC1 kit. The expression of IL-17a were detected using RT-PCR, ELISA and Western blot. After co-culture with the CEC in different group for 24 h, the phagocytosis ability and macrophage polarization were assessed in RAW264.7 cells co-cultured with CEC with or without HS or NMN treatment. Besides, the involvement of Notch pathway in the RAW264.7 would be analyzed. The potential involvement of Sirtuin 1 (SIRT1) and IL-17a in the crosstalk between CEC and macrophage was studied with SIRT1 inhibitor EX 527 and anti-IL-17a monoclonal antibody, respectively.
Results: NMN treatment increased NAD+ concentration and thus improved cell viability, reduced apoptotic rate and decreased the LDH release in HS-treated CEC. Besides, NMN alleviated HS-induced MMP, intracellular ROS and LDH release. Besides, it was confirmed NMN improve SIRT1 function and decreased the HS related IL-17a expression in CEC and then alleviated macrophage phagocytosis ability and M1 polarization based on a CEC-macrophage co-culture system. Moreover, NMN treatment of CEC in the CEC could moderate the subsequent macrophage activation through Notch pathway. SIRT1 activation and IL-17a inhibition was regarded as key progress in the function of NMN based on the application of EX 527 and anti-IL-17a antibody in the CEC-macrophage co-culture system.
Conclusion: The findings demonstrated that NMN could alleviated HS-induced DED status through regulating the CEC/macrophage interaction. Our data pointed to the role of SIRT1, IL-17a and Notch pathway in the function of NMN and then provided updated knowledge of potential NMN application in the management of DED.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917392 | PMC |
http://dx.doi.org/10.2147/JIR.S292764 | DOI Listing |
Bioresour Technol
January 2025
Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea. Electronic address:
Polyhydroxybutyrate (PHB) production using methanotrophs offers an economical solution to counter increasing environmental pollution. However, the substrate specificity of methanotrophs limits their ability to use multiple gases for chemical production. In this study, a synthetic heterotrophic and methanotrophic co-culture system was developed to co-utilize methane and propane for PHB production.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China. Electronic address:
Pyroptosis and macrophage pro-inflammatory activation play an important role in hepatocellular carcinoma (HCC) progression. However, the specific regulatory mechanisms remain unclear. We identified pyroptosis-related differentially expressed genes (DEGs) based on the GSE4183 and GSE44861 datasets as well as EVenn database.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China.
Tumors, as intricate ecosystems, comprise oncocytes and the highly dynamic tumor stroma. Tumor stroma, representing the non-cancerous and non-cellular composition of the tumor microenvironment (TME), plays a crucial role in oncogenesis and progression, through its interactions with biological, chemical, and mechanical signals. This review aims to analyze the challenges of stroma mimicry models, and highlight advanced personalized co-culture approaches for recapitulating tumor stroma using patient-derived tumor organoids (PDTOs).
View Article and Find Full Text PDFPathogens
January 2025
Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland.
is an important vector of infectious human and livestock diseases in Europe. Co-infections of pathogens in ticks and hosts have been reported. Tick cell lines offer a useful model system for study of co-infections.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan.
Our previous study demonstrated that γ-cyclodextrin (γ-CD)-perilla oil inclusion complexes increase plasma α-linolenic acid and eicosapentaenoic acid levels in healthy rats without adverse effects. The present study examined the effects of perilla oil, γ-CD, and their inclusion complexes on rats fed cholic acid (CA) to mimic the elevated gastrointestinal 12-hydroxylated (12OH) bile acid levels in high-fat diet-fed rats. Rats fed CA (CA group) tended to have higher AST, ALT, plasma total cholesterol (T-CHO), and triglyceride (TG) levels compared to controls fed a standard diet without CA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!