Laser microsurgery has long been an important means of assessing the functions of specific cells and tissues. Most laser ablation systems use short, highly focused laser pulses to create plasma-mediated lesions with dimensions on the order of the wavelength of light. While the small size of the lesion enables ablation with high spatial resolution, it also makes it difficult to ablate larger structures. We developed an infrared laser ablation system capable of thermally lesioning tissues with spot sizes tunable by the duration and amplitude of laser pulses. We used our laser system in the roundworm C. elegans to kill single neurons and to sever the dorsal and ventral nerve cords, structures that are difficult to lesion using a plasma-based ablation system. We used these ablations to investigate the source of convulsions in a gain-of-function mutant for the acetylcholine receptor ACR-2. Severing the ventral nerve cord caused convulsions to occur independently anterior and posterior to the lesion, suggesting that convulsions can arise independently from distinct subsets of the motor circuit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930185PMC
http://dx.doi.org/10.1038/s41598-021-84516-yDOI Listing

Publication Analysis

Top Keywords

laser ablation
12
laser pulses
8
ablation system
8
ventral nerve
8
laser
6
ablation
5
thermal laser
4
ablation tunable
4
lesion
4
tunable lesion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!