Solution-processed metal-halide perovskites are emerging as one of the most promising materials for displays, lighting and energy generation. Currently, the best-performing perovskite optoelectronic devices are based on lead halides and the lead toxicity severely restricts their practical applications. Moreover, efficient white electroluminescence from broadband-emission metal halides remains a challenge. Here we demonstrate efficient and bright lead-free LEDs based on cesium copper halides enabled by introducing an organic additive (Tween, polyethylene glycol sorbitan monooleate) into the precursor solutions. We find the additive can reduce the trap states, enhancing the photoluminescence quantum efficiency of the metal halide films, and increase the surface potential, facilitating the hole injection and transport in the LEDs. Consequently, we achieve warm-white LEDs reaching an external quantum efficiency of 3.1% and a luminance of 1570 cd m at a low voltage of 5.4 V, showing great promise of lead-free metal halides for solution-processed white LED applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930043PMC
http://dx.doi.org/10.1038/s41467-021-21638-xDOI Listing

Publication Analysis

Top Keywords

metal halides
12
efficient bright
8
lead-free metal
8
halides solution-processed
8
quantum efficiency
8
halides
5
bright warm-white
4
warm-white electroluminescence
4
electroluminescence lead-free
4
metal
4

Similar Publications

Metal-free molecular perovskites have shown great potential for X-ray detection due to their tunable chemical structures, low toxicity, and excellent photophysical properties. However, their limited X-ray absorption and environmental instability restrict their practical application. In this study, cesium-based molecular perovskites (MDABCO-CsX, X = Cl, Br, I) are developed by introducing Cs at the B-site to enhance X-ray absorption while retaining low toxicity.

View Article and Find Full Text PDF

Ultrafast chirality-dependent dynamics from helicity-resolved transient absorption spectroscopy.

Nanoscale

January 2025

State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.

Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing.

View Article and Find Full Text PDF

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

January 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF

Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility.

View Article and Find Full Text PDF

Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, IPb (PbI) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI3 (FA = CH(NH2)2) material, are found to create electron (hole) traps when the surfaces with IPb (PbI) antisite defects are negatively (positively) charged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!