Intra-tumor heterogeneity is widely accepted as one of the key factors, which hinders cancer patients from achieving full recovery. Especially, cancer stem cells (CSCs) may exhibit self-renewal capacity, which makes it harder for complete elimination of tumor. Therefore, simultaneously inhibiting CSCs and non-CSCs in tumors becomes a promising strategy to obtain sustainable anticancer efficacy. Salinomycin (Sal) was reported to be critical to inhibit CSCs. However, the poor bioavailability and catastrophic side effects brought about limitations to clinical practice. To solve this problem, we previously constructed gelatinase-stimuli nanoparticles composed of nontoxic, biocompatible polyethylene glycol-polycaprolactone (PEG-PCL) copolymer with a gelatinase-cleavable peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG) inserted between the two blocks of the copolymer. By applying our "smart" gelatinase-responsive nanoparticles for Sal delivery, we have demonstrated specific accumulation in tumor, anti-CSCs ability and reduced toxicity of Sal-NPs in our previous study. In the present study, we synthesized Sal-Docetaxel-loaded gelatinase-stimuli nanoparticles (Sal-Doc NP) and confirmed single emulsion as the optimal method of producing Sal-Doc NPs (Sal-Doc SE-NP) in comparison with nanoprecipitation. Sal-Doc SE-NPs inhibited both CSCs and non-CSCs in mice transplanted with cervical cancer, and might be associated with enhanced restriction of epithelial-mesenchymal transition (EMT) pathway. Besides, the tumorigenic capacity and growing speed were obviously suppressed in Sal-Doc-SE-NPs-treated group in rechallenge experiment. Our results suggest that Sal-Doc-loaded gelatinase-stimuli nanoparticles could be a promising strategy to enhance antitumor efficacy and reduce side effects by simultaneously suppressing CSCs and non-CSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935125PMC
http://dx.doi.org/10.1080/10717544.2021.1886378DOI Listing

Publication Analysis

Top Keywords

cscs non-cscs
12
gelatinase-stimuli nanoparticles
12
cervical cancer
8
cancer stem
8
stem cells
8
promising strategy
8
side effects
8
nanoparticles
5
cancer
5
cscs
5

Similar Publications

Core-shell vector-mediated co-delivery of CRISPR/Cas9 system and hydrophobic drugs against triple-negative breast cancer stem cells.

J Control Release

January 2025

Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, DuShuHu High Education Zone, Suzhou, Jiangsu Province 215123, China. Electronic address:

Cancer stem cells (CSCs) play an important role in the development of triple-negative breast cancer (TNBC), including metastasis, invasion, tumorigenicity, and drug resistance. Moreover, non-CSCs can spontaneously transform into CSCs in special tumor microenvironments, thereby leading to poor prognosis or even failed treatments. Therefore, reversing CSCs into normal tumor cells in a sustained-acting manner is a promising strategy.

View Article and Find Full Text PDF
Article Synopsis
  • MACC1 is a newly identified factor in lung cancer that promotes the transition of non-cancer stem cells (non-CSCs) to cancer stem cells (CSCs), which play a key role in tumor growth.
  • High levels of MACC1 are found in stemness-enriched lung cancer cells, and reducing MACC1 expression through shRNA effectively halts this transition.
  • The study suggests that MACC1 stabilizes KLF4 mRNA by inhibiting microRNA-25, and understanding this relationship could lead to targeted therapies for cancer stem cells.
View Article and Find Full Text PDF

The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations.

J Biol Chem

December 2024

Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy. Electronic address:

Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features.

View Article and Find Full Text PDF

Exosomes which are membrane vesicles released by cells have gained significant interest in the field of cancer therapy as a novel means of intercellular communication. Their role in immune activation and their pathophysiological functions in cancer therapy have been recognized. Exosomes carry diverse bioactive components including proteins, mRNA, microRNAs, and bioactive lipids.

View Article and Find Full Text PDF

Chromosomal instability as an architect of the cancer stemness landscape.

Front Cell Dev Biol

September 2024

Department of Pathology, University of California, San Diego, La Jolla, CA, United States.

Despite a critical role for tumor-initiating cancer stem cells (CSCs) in breast cancer progression, major questions remain about the properties and signaling pathways essential for their function. Recent discoveries highlighting mechanisms of CSC-resistance to the stress caused by chromosomal instability (CIN) may provide valuable new insight into the underlying forces driving stemness properties. While stress tolerance is a well-known attribute of CSCs, CIN-induced stress is distinctive since levels appear to increase during tumor initiation and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!