Sulfur, which is generated from the waste byproducts in the oil and gas refinery industry, is an abundant, cheap, stable, and readily available source in the world. However, the utilization of excessive amounts of sulfur is mostly limited, and developing novel methods for sulfur conversion is still a global concern. Here, we report a facile one-step conversion from elemental sulfur to functional poly(-thiocarbamate)s through a multicomponent polymerization of sulfur, diols, and diisocyanides, which possesses a series of advantages such as mild condition (55 °C), short reaction time (1 h), 100% atom economy, and transition-metal free in the catalyst system. Seven poly(-thiocarbamate)s are constructed with high yields (up to 95%), large molecular weight (up to 53100 of ), good solubility in organic solvents, and completely new polymer structures. The poly(-thiocarbamate)s possess a high refractive index above 1.7 from 600 to 1700 nm by adjusting the sulfur content. By incorporating tetraphenylethene (TPE) moieties into the polymer structure, the poly(-thiocarbamate)s can also be designed as fluorescent sensors to detect harmful metal cation of Hg in a turn-on mode with high sensitivity (LOD = 32 nM) and excellent selectivity (over interference cations of Pb, Au, Ag). Different from the previous reports, the exact coordination structure is first identified by single-crystal X-ray diffraction, which is revealed in a tetracoordination fashion (two sulfur and two chloride) using a model coordination compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c00243 | DOI Listing |
Braz J Biol
January 2025
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Núcleo de Ciências Biológicas e Ambientais, Sertão, RS, Brasil.
The shrub Rubus erythroclados Mart. ex Hook.f.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Climate and Environmental Physics, University of Bern, 3012 Bern, Switzerland.
To assess the impact of ongoing, historically unprecedented Arctic ice melting, precisely synchronized chronologies are indispensable for past analogs of abrupt climate change. Around 12,900 years before present (B.P.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, Brown University, Providence, RI, USA.
Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.
View Article and Find Full Text PDFIn the past 20 years, sulfur hexafluoride (SF) has been considered a highly reliable tracer for assessing modern water (< 65 yrs old) in groundwater. However, modern-air contamination may introduce complications in interpreting data obtained using current sampling methods. A new airtight methodology isolates the sample from modern ambient air; thus, returning more reproducible and reliable results when compared to two traditional (air-sensitive and non-airtight) methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!