Oxygen activation is a key step in the catalytic oxidation of formaldehyde (HCHO) at room temperature. In this study, we synthesized a carbon/CoO nanocomposite (C-CoO) as a solution to the insufficient capability of pristine CoO (P-CoO) to activate oxygen for the first time. Oxygen activation was improved via carbon preventing the agglomeration of CoO nanoparticles, resulting in small particles (approximately 7.7 nm) and more exposed active sites (oxygen vacancies and Co). The removal efficiency of C-CoO for 1 ppm of HCHO remained above 90%, whereas P-CoO was rapidly deactivated. In static tests, the CO selectivity of C-CoO was close to 100%, far exceeding that of P-CoO (42%). Various microscopic analyses indicated the formation and interaction of a composite structure between the C and CoO interface. The carbon composite caused a disorder on the surface lattice of CoO, constructing more oxygen vacancies than P-CoO. Consequently, the surface reducibility of C-CoO was improved, as was its ability to continuously activate oxygen and HO into reactive oxygen species (ROS). We speculate that accelerated production of ROS helped rapidly degrade intermediates such as dioxymethylene, formate, and carbonate into CO. In contrast, carbonate accumulation on P-CoO surfaces containing less ROS may have caused P-CoO inactivation. Compared with noble nanoparticles, this study provides a transition metal-based nanocomposite for HCHO oxidation with high efficiency, high selectivity, and low cost, which is meaningful for indoor air purification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c00490DOI Listing

Publication Analysis

Top Keywords

oxygen activation
12
carbon/coo nanocomposite
8
catalytic oxidation
8
oxidation formaldehyde
8
room temperature
8
activate oxygen
8
oxygen vacancies
8
oxygen
7
p-coo
6
improved oxygen
4

Similar Publications

This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.

View Article and Find Full Text PDF

Hyperbaric oxygen therapy in the treatment of severe gastric laceration with active bleeding: A case report.

World J Gastrointest Endosc

January 2025

Department of Gastroenterology, Shenzhen People's Hospital (Jinan University of Second Clinical Medical Sciences), Shenzhen 518020, Guangdong Province, China.

Background: Endoscopic therapy is the primary approach for treating Mallory-Weiss syndrome, particularly under conditions of mucosal protection and gastric acid suppression. However, for a subset of patients who cannot undergo endoscopic intervention or for whom such treatment proves ineffective, alternative measures like arterial embolization or surgical intervention may be required. While hyperbaric oxygen therapy (HBOT) has been applied across a range of medical conditions, its application in managing hemorrhage due to gastric tears remains undocumented.

View Article and Find Full Text PDF

Formononetin promotes porcine oocytes maturation and improves embryonic development by reducing oxidative stress.

Front Cell Dev Biol

January 2025

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.

Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.

View Article and Find Full Text PDF

A multifunctional photothermal electrospun PLGA/MoS@Pd nanofiber membrane for diabetic wound healing.

Regen Biomater

December 2024

Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.

Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.

View Article and Find Full Text PDF

Background: Polydatin (3,4',5-trihydroxy-3-β-d-glucopyranoside, PD) is known for its antioxidant and anti-inflammatory properties. Oxaliplatin (OXA)-based chemotherapy is the first-line treatment for metastatic and recurrent colorectal cancer (CRC). However, the lack of selectivity for normal cells often results in side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!