Genetic skin diseases, also known as genodermatoses, are inherited disorders affecting skin and constitute a large and heterogeneous group of diseases. While genodermatoses are rare with the prevalence rate of less than 1 in 50,000 - 200,000, they frequently occur at birth or early in life and are generally chronic, severe, and could be life-threatening. The quality of life of patients and their families are severely compromised by the negative psychosocial impact of disease, physical manifestations, and the lack or loss of autonomy. Currently, there are no curative treatments for these conditions. Ex vivo gene modification therapy that involves modification or correction of mutant genes in patients' cells in vitro and then transplanted back to patients to restore functional gene expression has being developed for genodermatoses. In this review, the ex vivo gene modification therapy strategies for genodermatoses are reviewed, focusing on current advances in gene modification and correction in patients' cells and delivery of genetically modified cells to patients with discussions on gene therapy trials which have been performed in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432139 | PMC |
http://dx.doi.org/10.1111/exd.14314 | DOI Listing |
Plant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFHaemophilia
January 2025
Medicine and Pathology, Georgetown University, Washington, District of Columbia, USA.
Introduction: Gene editing therapies offer the possibility of substantial improvement in treatment and quality of life for people with haemophilia (PWH) in a landscape of dynamic therapeutic advancement. Developing a common and understandable language to discuss gene editing will be essential to ensure these treatments can be deployed in a safe and effective manner with fully informed and shared decision-making between healthcare professionals (HCPs) and PWH. A lexicon explaining and clarifying key concepts is one potential tool to address these aims.
View Article and Find Full Text PDFJ Viral Hepat
February 2025
Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!