A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Therapeutic angiogenesis using zinc oxide nanoflowers for the treatment of hind limb ischemia in a rat model. | LitMetric

Critical limb ischemia (CLI) is a severe type of peripheral artery disease (PAD) which occurs due to an inadequate supply of blood to the limb extremities. Patients with CLI often suffer from extreme cramping pain, impaired wound healing, immobility, cardiovascular complications, amputation of the affected limb and even death. The conventional therapy for treating CLI includes surgical revascularization as well as restoration of angiogenesis using growth factor therapy. However, surgical revascularization is only suitable for a small percentage of CLI patients and is associated with a high perioperative mortality rate. The use of growth factors is also limited in terms of their poor therapeutic angiogenic potential, as observed in earlier clinical studies which could be attributed to their poor bio-availability and non-specificity issues. Therefore, to overcome the aforesaid disadvantages of conventional strategies there is an urgent need for the advancement of new alternative therapeutic biomaterials to treat CLI. In the past few decades, various research groups, including ours, have been involved in developing different pro-angiogenic nanomaterials. Among these, zinc oxide nanoflowers (ZONFs), established in our laboratory, are considered one of the more potent nanoparticles for inducing therapeutic angiogenesis. In our earlier studies we showed that ZONFs promote angiogenesis by inducing the formation of reactive oxygen species and nitric oxide (NO) as well as activating Akt/MAPK/eNOS cell signaling pathways in endothelial cells. Recently, we have also reported the therapeutic potential of ZONFs to treat cerebral ischemia through their neuritogenic and neuroprotective properties, exploiting angio-neural cross-talk. Considering the excellent pro-angiogenic properties of ZONFs and the importance of revascularization for the treatment of CLI, in the present study we comprehensively explore the therapeutic potential of ZONFs in a rat hind limb ischemia model (established by ligating the hind limb femoral artery), an animal model that mimics CLI in humans. The behavioral studies, laser Doppler perfusion imaging, histopathology and immunofluorescence as well as estimation of serum NO level showed that the administration of ZONFs could ameliorate ischemia in rats at a faster rate by promoting therapeutic angiogenesis to the ischemic sites. Altogether, the present study offers an alternative nanomedicine approach employing ZONFs for the treatment of PADs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/abebd1DOI Listing

Publication Analysis

Top Keywords

therapeutic angiogenesis
12
hind limb
12
limb ischemia
12
zinc oxide
8
oxide nanoflowers
8
surgical revascularization
8
therapeutic potential
8
potential zonfs
8
therapeutic
7
cli
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!