In high-intensity focused ultrasound (HIFU) treatment, a method that monitors tissue changes while irradiating therapeutic ultrasound is needed to detect changes in the order of milliseconds due to thermal coagulation and the presence of cavitation bubbles. The new filtering method in which only the HIFU noise was reduced while the tissue signals remained intact was proposed in the conventional HIFU exposure in our preliminary study. However, HIFU was irradiated perpendicular to the direction of the imaging ultrasound in the preliminary experiment, which was believed to be impractical. This study investigated the efficacy of the proposed method a parallel setup, in which both HIFU and imaging beams have the same axis just as in a practical application. In addition, this filtering algorithm was applied to the "Trigger HIFU" sequence in which ultrasound-induced cavitation bubbles were generated in the HIFU focal region to enhance heating. In this setup and sequence, HIFU noise level was increased and the summation or difference tone induced by the interaction of HIFU waves with the imaging pulse has the potential to affect this proposed method. Ex-vivo experiments proved that the HIFU noise was selectively eliminated by the proposed filtering method in which chaotic acoustic signals were emitted by the cavitation bubbles at the HIFU focus. These results suggest that the proposed method was practically efficient for monitoring tissue changes in HIFU-induced cavitation bubbles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2021.106394DOI Listing

Publication Analysis

Top Keywords

cavitation bubbles
16
hifu noise
12
proposed method
12
hifu
10
high-intensity focused
8
focused ultrasound
8
tissue changes
8
filtering method
8
method
7
proposed
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!