Trifluoroacetate (TFA) is an ultrashort-chain perfluoroalkyl substance, which is ubiquitously present in the aqueous environment. Due to its high mobility, it accumulates in plant material. The study presented here shows for the first time that TFA is a widely spread contaminant in beer and tea / herbal infusions. In 104beer samples from 23countries, TFA was detected up to 51 µg/L with a median concentration of 6.1 µg/L. An indicative brewing test and a correlation approach with potassium (K) indicate that the main source of TFA in beer is most likely the applied malt. It could be proven that the impact of the applied water is negligible in terms of TFA, which was supported by the analysis of numerous tap water samples from different countries. The unintended extraction of TFA was also demonstrated for tea / herbal infusions with a median concentration of 2.4 µg/L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.129304 | DOI Listing |
Environ Sci Technol
December 2024
Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.
Chemosphere
November 2024
ON-HEALTH group, Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Spain. Electronic address:
Climate change impacts the Mediterranean region, transforming it from region with a semi-arid climate to a region with an arid climate. Under this situation, while groundwater is an essential hydric resource, its existence is in danger due to anthropogenic pressures. Persistent mobile organic compounds (PMOCs) have recently been recognised as an emerging problem; however, PMOCs in groundwater need to be better characterised.
View Article and Find Full Text PDFJ Chromatogr A
October 2024
Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China. Electronic address:
Environ Sci Technol
August 2024
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Driven by the global popularity of electric vehicles and the shortage of critical raw materials for batteries, the spent lithium-ion power battery (LIPB) recycling industry has exhibited explosive growth in both quantity and scale. However, relatively little information is known about the environmental risks posed by LIPB recycling, in particular with regards to perfluoroalkyl and polyfluoroalkyl substances (PFAS). In this work, suspect screening and nontarget analysis were carried out to characterize PFAS in soil, dust, water and sediment from a LIPB recycling area.
View Article and Find Full Text PDFWater Res
March 2024
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
Per- and polyfluoroalkyl substances (PFASs) have become a crucial environmental concern owing to their exceptional persistence, ability to bioaccumulate within ecosystems, and potential to adversely affect biota. Products and materials containing PFASs are usually discarded into municipal solid waste (MSW) at the end of their life cycle, and the fate of PFASs may differ when different disposal methods of MSWs are employed. To date, limited research has focus on the occurrence, behaviors, and fate of PFASs emitted from various MSW disposal sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!