Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson's disease.

Cell Rep

Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT London, UK; Science for Life Laboratory (SciLifeLab), KTH - Royal Institute of Technology, Tomtebodavägen 23, 171 65 Solna, Stockholm, Sweden. Electronic address:

Published: March 2021

Parkinson's disease (PD) is the most common progressive neurological disorder compromising motor functions. However, nonmotor symptoms, such as gastrointestinal (GI) dysfunction, precede those affecting movement. Evidence of an early involvement of the GI tract and enteric nervous system highlights the need for better understanding of the role of gut microbiota in GI complications in PD. Here, we investigate the gut microbiome of patients with PD using metagenomics and serum metabolomics. We integrate these data using metabolic modeling and construct an integrative correlation network giving insight into key microbial species linked with disease severity, GI dysfunction, and age of patients with PD. Functional analysis reveals an increased microbial capability to degrade mucin and host glycans in PD. Personalized community-level metabolic modeling reveals the microbial contribution to folate deficiency and hyperhomocysteinemia observed in patients with PD. The metabolic modeling approach could be applied to uncover gut microbial metabolic contributions to PD pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.108807DOI Listing

Publication Analysis

Top Keywords

metabolic modeling
12
gut microbiome
8
parkinson's disease
8
systematic analysis
4
gut
4
analysis gut
4
microbiome reveals
4
reveals role
4
role bacterial
4
bacterial folate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!