Objective: Providing behavioral health interventions via smartphones allows these interventions to be adapted to the changing behavior, preferences, and needs of individuals. This can be achieved through reinforcement learning (RL), a sub-area of machine learning. However, many challenges could affect the effectiveness of these algorithms in the real world. We provide guidelines for decision-making.
Materials And Methods: Using thematic analysis, we describe challenges, considerations, and solutions for algorithm design decisions in a collaboration between health services researchers, clinicians, and data scientists. We use the design process of an RL algorithm for a mobile health study "DIAMANTE" for increasing physical activity in underserved patients with diabetes and depression. Over the 1.5-year project, we kept track of the research process using collaborative cloud Google Documents, Whatsapp messenger, and video teleconferencing. We discussed, categorized, and coded critical challenges. We grouped challenges to create thematic topic process domains.
Results: Nine challenges emerged, which we divided into 3 major themes: 1. Choosing the model for decision-making, including appropriate contextual and reward variables; 2. Data handling/collection, such as how to deal with missing or incorrect data in real-time; 3. Weighing the algorithm performance vs effectiveness/implementation in real-world settings.
Conclusion: The creation of effective behavioral health interventions does not depend only on final algorithm performance. Many decisions in the real world are necessary to formulate the design of problem parameters to which an algorithm is applied. Researchers must document and evaulate these considerations and decisions before and during the intervention period, to increase transparency, accountability, and reproducibility.
Trial Registration: clinicaltrials.gov, NCT03490253.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200266 | PMC |
http://dx.doi.org/10.1093/jamia/ocab001 | DOI Listing |
Background: Coronary heart disease (CHD) and depression frequently co-occur, significantly impacting patient outcomes. However, comprehensive health status assessment tools for this complex population are lacking. This study aimed to develop and validate an explainable machine learning model to evaluate overall health status in patients with comorbid CHD and depression.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
January 2025
1School of Engineering, Brown University, Providence, Rhode Island, USA;
The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.
View Article and Find Full Text PDFMenopause
January 2025
National Institute of Health, Cheongju, Republic of Korea.
Objectives: We examined the health-related quality of life (HRQoL) during menopause transition (MT) among middle-aged Korean women.
Methods: This cross-sectional study comprised 2,290 middle-aged women who completed web-based questionnaires between 2020 and 2022. Based on self-reported menstrual cycle patterns, menopause status was classified as premenopausal, early or late transition, or postmenopausal.
J Occup Environ Hyg
January 2025
Institute of Physical Factors and Occupational Health, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong Province, China.
The noise exposure levels of workers wearing hearing protective devices (HPDs) depend on ambient noise and the protective effect of hearing protectors. This cross-sectional study aimed to adjust for cumulative noise exposure (CNE) based on the effective protection of hearing protection devices and explore the dose-response relationship between noise-induced hearing loss (NIHL) and adjusted cumulative noise exposure. A questionnaire was used to acquire the basic characteristics and occupational information of noise-exposed workers.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Burwood, Australia.
Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!