Parkinson's disease is a neurodegenerative disorder associated with misfolding and aggregation of α-synuclein as a hallmark protein. Two yeast strain collections comprising conditional alleles of essential genes were screened for the ability of each allele to reduce or improve yeast growth upon α-synuclein expression. The resulting 98 novel modulators of α-synuclein toxicity clustered in several major categories including transcription, rRNA processing and ribosome biogenesis, RNA metabolism and protein degradation. Furthermore, expression of α-synuclein caused alterations in pre-rRNA transcript levels in yeast and in human cells. We identified the nucleolar DEAD-box helicase Dbp4 as a prominent modulator of α-synuclein toxicity. Downregulation of DBP4 rescued cells from α-synuclein toxicity, whereas overexpression led to a synthetic lethal phenotype. We discovered that α-synuclein interacts with Dbp4 or its human ortholog DDX10, sequesters the protein outside the nucleolus in yeast and in human cells, and stabilizes a fraction of α-synuclein oligomeric species. These findings provide a novel link between nucleolar processes and α-synuclein mediated toxicity with DDX10 emerging as a promising drug target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928443PMC
http://dx.doi.org/10.1371/journal.pgen.1009407DOI Listing

Publication Analysis

Top Keywords

α-synuclein toxicity
16
α-synuclein
10
yeast human
8
human cells
8
toxicity
5
dead-box rna
4
rna helicase
4
helicase dbp4/ddx10
4
dbp4/ddx10 enhancer
4
enhancer α-synuclein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!