Primate visual cortex consists of dozens of distinct brain areas, each providing a highly specialized component to the sophisticated task of encoding the incoming sensory information and creating a representation of our visual environment that underlies our perception and action. One such area is the medial superior temporal cortex (MST), a motion-sensitive, direction-selective part of the primate visual cortex. It receives most of its input from the middle temporal (MT) area, but MST cells have larger receptive fields and respond to more complex motion patterns. The finding that MST cells are tuned for optic flow patterns has led to the suggestion that the area plays an important role in the perception of self-motion. This hypothesis has received further support from studies showing that some MST cells also respond selectively to vestibular cues. Furthermore, the area is part of a network that controls the planning and execution of smooth pursuit eye movements and its activity is modulated by cognitive factors, such as attention and working memory. This review of more than 90 studies focuses on providing clarity of the heterogeneous findings on MST in the macaque cortex and its putative homolog in the human cortex. From this analysis of the unique anatomical and functional position in the hierarchy of areas and processing steps in primate visual cortex, MST emerges as a gateway between perception, cognition, and action planning. Given this pivotal role, this area represents an ideal model system for the transition from sensation to cognition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00384.2020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!