Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The degree to which executive function (EF) abilities (including working memory [WM], inhibitory control [IC], and cognitive flexibility [CF]) can be enhanced through training is an important question; however, research in this area is inconsistent. Previous cognitive training studies largely agree that training leads to improvements in the trained task, but the generalisability of this improvement to other related tasks remains controversial. In this article, we present a pre-registered experiment that used an adaptive training procedure to examine whether EFs can be enhanced through cognitive training, and directly compared the efficacy and generalisability across sub-components of EF using training programmes that target WM, IC, or CF versus an active control group. Participants ( = 160) first completed a battery of tasks that assessed EFs, then were randomly assigned to one of the four training groups, and completed an adaptive procedure over 21 days (10 training sessions) that targeted a specific sub-component of EF (or was comparatively engaging and challenging, but did not train a specific EF). At post-test, participants returned to the lab to repeat the battery of EF tasks. Results revealed robust direct training effects (i.e., on trained task), but limited evidence to support near (i.e., same EF, different task) and far (i.e., different EF and task) transfer effects. Where indirect training benefits emerged, the effects were more readily attributable to the overlapping training/assessment task routines, rather than more general enhancements to the underlying cognitive processes or neural circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358555 | PMC |
http://dx.doi.org/10.1177/17470218211002509 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!