A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Training executive functions using an adaptive procedure over 21 days (10 training sessions) and an active control group. | LitMetric

The degree to which executive function (EF) abilities (including working memory [WM], inhibitory control [IC], and cognitive flexibility [CF]) can be enhanced through training is an important question; however, research in this area is inconsistent. Previous cognitive training studies largely agree that training leads to improvements in the trained task, but the generalisability of this improvement to other related tasks remains controversial. In this article, we present a pre-registered experiment that used an adaptive training procedure to examine whether EFs can be enhanced through cognitive training, and directly compared the efficacy and generalisability across sub-components of EF using training programmes that target WM, IC, or CF versus an active control group. Participants ( = 160) first completed a battery of tasks that assessed EFs, then were randomly assigned to one of the four training groups, and completed an adaptive procedure over 21 days (10 training sessions) that targeted a specific sub-component of EF (or was comparatively engaging and challenging, but did not train a specific EF). At post-test, participants returned to the lab to repeat the battery of EF tasks. Results revealed robust direct training effects (i.e., on trained task), but limited evidence to support near (i.e., same EF, different task) and far (i.e., different EF and task) transfer effects. Where indirect training benefits emerged, the effects were more readily attributable to the overlapping training/assessment task routines, rather than more general enhancements to the underlying cognitive processes or neural circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358555PMC
http://dx.doi.org/10.1177/17470218211002509DOI Listing

Publication Analysis

Top Keywords

training
12
adaptive procedure
8
procedure 21 days
8
21 days training
8
training sessions
8
active control
8
control group
8
cognitive training
8
trained task
8
battery tasks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!