A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Risk assessment of insect pest expansion in alpine ecosystems under climate change. | LitMetric

Background: Growth in insect pest populations poses a significant threat to ecosystem functions and services, societal development, and food security in alpine regions under climate change. Risk assessments are important prioritization tools for pest management, which must be used to study insect pest expansion in alpine ecosystems under global warming. We used species distribution modeling to simulate the current and future distribution probabilities of 58 insect pest species in the Qinghai Province, China, based on a comprehensive field investigation. Subsequently, general linear modeling was used to explore the relationship between the distribution probability of these species and the damage caused by them. Finally, we assessed the ecological risk of insect pest expansion across different alpine ecosystems under climate change.

Results: Climate change could increase the distribution probabilities of insect pest species across different alpine ecosystems. However, the presence of insect pest species may not correspond to the damage occurrence in alpine ecosystems based on percent leaf loss, amount of stunting, and seedling death of their host species. Significant positive relationships between distribution probability and damage occurrence were found for several of the examined insect pest species. Insect pest expansion is likely to increase extensively in alpine ecosystems under increasing carbon dioxide (CO ) emission scenarios.

Conclusion: The relationships between distribution probability and damage occurrence should be considered in species distribution modeling for risk assessment of insect pest expansion under climate change. Our study could improve the effectiveness of risk assessment of insect pest expansion under changing climate conditions. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.6354DOI Listing

Publication Analysis

Top Keywords

insect pest
44
pest expansion
24
alpine ecosystems
24
climate change
16
pest species
16
risk assessment
12
assessment insect
12
pest
12
expansion alpine
12
distribution probability
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!