Wine is very often consumed with a meal. However, although it is well known to tasters that the taste of wine changes in the presence of food, the influence of dietary lipids on wine astringency and bitterness caused by grape tannins is not well established from a molecular point of view. In this context, we investigated wine tannin-lipid interactions by combining biophysical techniques to sensory analysis. Nuclear magnetic resonance and optical and electron microscopy showed an interaction between catechin, a majority component of grape tannins, and lipid droplets from a phospholipid-stabilized oil-in-water emulsion, characterized by (a) an increase in the droplet size in the presence of catechin, (b) slowing of their size growth over time, and (c) an increase in lipid dynamics in the droplet interfacial layer. Those results were strengthened by sensory analysis, which demonstrated that dietary oils decrease the perception of astringency of grape tannin solutions. Our results highlight that dietary lipids are crucial molecular agents impacting our sensory perception during wine consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c06589DOI Listing

Publication Analysis

Top Keywords

dietary lipids
12
grape tannins
12
sensory analysis
8
wine
5
insights wine
4
wine taste
4
taste impact
4
dietary
4
impact dietary
4
sensory
4

Similar Publications

This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Background: Recent studies have shown that ferroptosis, a newly identified regulated cell death characterized by increased lipid peroxidation and accumulation of toxic lipid peroxides, is closely related to the pathophysiological processes of nervous system diseases which can be inhibited with iron chelators, lipophilic antioxidants, and lipid peroxidation inhibitors.

Objective: To review the current evidence on the efficacy of various natural polyphenols in nervous system injury.

Methods: The data selected for this review were collected by searching the MEDLINE/PubMed, Web of Science, Scopus, and Google Scholar database for articles published in English between 2000 and 2024 using the following terms: cell death, regulated cell death, ferroptosis, lipid peroxides, iron, and glutathione peroxidase.

View Article and Find Full Text PDF

The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks.

View Article and Find Full Text PDF

Purpose: To study the potential of a candidate probiotic strain belonging to the Enterococcus durans species in alleviating hypercholesterolemia and improving the microbial milieu of rat gut.

Methods: A previously isolated and characterized E. durans strain NPL 1334 was further screened in vitro for its bile salt hydrolyzation and cholesterol assimilation ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!