ATP-binding cassette (ABC) transporters are ubiquitous across all realms of life. Dogma suggests that bacterial ABC transporters include both importers and exporters, whilst eukaryotic members of this family are solely exporters, implying that ABC import function was lost during evolution. This view is being challenged, for example energy-coupling factor (ECF)-type ABC importers appear to fulfil important roles in both algae and plants where they form the ABCI sub-family. Herein we discuss whether bacterial Type I and Type II ABC importers also made the transition into extant eukaryotes. Various studies suggest that Type I importers exist in algae and the liverwort family of primitive non-vascular plants, but not in higher plants. The existence of eukaryotic Type II importers is also supported: a transmembrane protein homologous to vitamin B12 import system transmembrane protein (BtuC), hemin transport system transmembrane protein (HmuU) and high-affinity zinc uptake system membrane protein (ZnuB) is present in the Cyanophora paradoxa genome. This protein has homologs within the genomes of red algae. Furthermore, its candidate nucleotide-binding domain (NBD) shows closest similarity to other bacterial Type II importer NBDs such as BtuD. Functional studies suggest that Type I importers have roles in maintaining sulphate levels in the chloroplast, whilst Type II importers probably act as importers of Mn or Zn , as inferred by comparisons with bacterial homologs. Possible explanations for the presence of these transporters in simple plants, but not in other eukaryotic organisms, are considered. In order to utilise the existing nomenclature for eukaryotic ABC proteins, we propose that eukaryotic Type I and II importers be classified as ABCJ and ABCK transporters, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/brv.12702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!