In recent years, proton exchange membrane fuel cells (PEMFCs) have been known to be a viable method for meeting the electrical energy needs, thereby enhancing the overall reliability of renewable energy systems. PEMFCs demonstrate various promising attributes like pollution-free, totally sustainable, non-self-discharging. These need hydrogen as fuel, and air for their operation, while the final product is pure water only. Thus, under varying operating conditions, the appropriate modeling and parameter optimization of PEMFCs have gained considerable importance in recent times. The evolutionary optimization approaches had been utilized in recent past for estimating PEMFCs parameters as exact modeling of the same does not exist in the literature. For the evaluation of PEMFCs performance criteria, a newly proposed algorithm is developed in this manuscript i.e. black widow optimization (BWO). Firstly, the performance of this proposed algorithm is checked by complex benchmark results. After that, this proposed algorithm is applied to extract the parameters of PEMFCs models under different operating temperatures. The parameter optimization results are obtained using BWO and are further compared with those obtained with five other algorithms, i.e., particle swarm optimization (PSO), multi-verse optimizer (MVO), sine cosine algorithm (SCA), whale optimization algorithm (WOA), and grey wolf optimization (GWO). The complete error analysis is carried out for the two data sheets of the PEMFCs to establish the superiority of BWO. It has been observed that the developed proposed algorithm gives better results when compared to those obtained with rest of the algorithms considered in this work. After calculating the error, non-parametric test is performed which suggests that the BWO is better than the rest of the compared algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-13097-0 | DOI Listing |
Clin Infect Dis
January 2025
IQVIA Inc., Falls Church, VA.
PLoS One
January 2025
Department of Computer Science, Faculty of Computing, Federal University of Lafia, Lafia, Nasarawa State, Nigeria.
PLoS Comput Biol
January 2025
Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, United Kingdom.
Many machine learning techniques have been used to construct gene regulatory networks (GRNs) through precision matrix that considers conditional independence among genes, and finally produces sparse version of GRNs. This construction can be improved using the auxiliary information like gene expression profile of the related species or gene markers. To reach out this goal, we apply a generalized linear model (GLM) in first step and later a penalized maximum likelihood to construct the gene regulatory network using Glasso technique for the residuals of a multi-level multivariate GLM among the gene expressions of one species as a multi-levels response variable and the gene expression of related species as a multivariate covariates.
View Article and Find Full Text PDFBioinformatics
January 2025
School of Computing and Artificial Intelligence, Southwest Jiaotong University, Sichuan 611756, China.
Motivation: The rapid development of single-cell RNA sequencing (scRNA-seq) has significantly advanced biomedical research. Clustering analysis, crucial for scRNA-seq data, faces challenges including data sparsity, high dimensionality, and variable gene expressions. Better low-dimensional embeddings for these complex data should maintain intrinsic information while making similar data close and dissimilar data distant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!