Soldiers suffer from multiple explosions in complex battlefield environment resulting in aggravated brain injuries. At present, researches mostly focus on the damage to human body caused by single explosion. In the repetitive impact study, small animals are mainly used for related experiments to study brain nerve damage. No in-depth research has been conducted on the dynamic response and damage of human brain under repetitive explosion shock waves. Therefore, this study use the Euler-Lagrange coupling method to construct an explosion shock wave-head fluid-structure coupling model, and numerically simulated the brain dynamic response subjected to single and repetitive blast waves, obtained flow field pressure, skull stress, skull displacement, intracranial pressure to analyze the brain damage. The simulation results of 100 g equivalent of TNT exploding at 1 m in front of the craniocerebral show that repetitive blast increase skull stress, intracranial pressure, skull displacement, and the damage of brain tissue changes from moderate to severe. Repetitive blasts show a certain cumulative damage effect, the severity of damage caused by double blast is 122.5% of single shock, and the severity of damage caused by triple blast is 105.9% of double blast and 131.5% of single blast. The data above shows that it is necessary to reduce soldiers' exposure from repetitive blast waves.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-021-02746-7DOI Listing

Publication Analysis

Top Keywords

repetitive blast
16
dynamic response
12
damage
9
cumulative damage
8
blast
8
damage human
8
explosion shock
8
blast waves
8
pressure skull
8
skull stress
8

Similar Publications

Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19).

View Article and Find Full Text PDF

Objective: The purpose of this study was to determine whether gray matter volume and diffusion-based metrics in associated white matter changed in breachers who had neuroimaging performed at two timepoints. A secondary purpose was to compare these changes in a group who had a one-year interval between their imaging timepoints to a group that had a two-year interval between imaging.

Methods: Between timepoints, clusters with significantly different gray matter volume were used as seeds for reconstruction of associated structural networks using diffusion metrics.

View Article and Find Full Text PDF

The purpose of this review is to summarize the long-term cognitive, psychological, fluid biomarker, and neuroimaging outcomes following repetitive concussive and subconcussive blast exposures sustained through a military career. A review of the literature was conducted, with 450 manuscripts originally identified and 44 manuscripts ultimately included in the review. The most robust studies investigating how repetitive concussive and subconcussive exposures related to cognitive performance suggest there is no meaningful impact.

View Article and Find Full Text PDF

This study focuses on the common presence of repetitive sequences within the sturgeon genome that may contribute to enhanced immune responses against infectious diseases. A repetitive 675 bp VAC-2M sequence in Russian sturgeon DNA that aligns with the Siberian sturgeon IGLV gene cluster was identified. A specific 218 bp long portion of the sequence was found to be identical between , and species, and NCBI blast analysis confirmed the presence of this DNA segment in the genome.

View Article and Find Full Text PDF
Article Synopsis
  • A study found that changes in the brain entorhinal cortex (EC) and specific blood lipids are linked to Alzheimer's disease (AD) in individuals with the apolipoprotein E ε4 genetic variant.
  • Analysis of brain imaging and lipid profiles revealed that ε4 carriers with mild traumatic brain injury (mTBI) had thicker left ECs, but repeated mTBIs reduced right EC thickness.
  • The research highlights the need for further investigation into the relationship between ε4, mTBI, and specific blood lipid ratios as potential biomarkers for early detection of AD in affected individuals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!