Human embryonic stem cells (hESCs) can be self-propagated indefinitely in culture while holding the capacity to generate almost all cell types. Although this powerful differentiation ability of hESCs has become a potential source of cell replacement therapies, application of stem cells in clinical practice relies heavily on the exquisite control of their developmental fate. In general, an essential first step in differentiation is to exit the pluripotent state, which is precariously balanced and depends on a variety of factors, mainly centering on the core transcriptional mechanism. To date, much evidence has indicated that transcription factors such as Sox2, Oct4, and Nanog control the self-renewal and pluripotency of hESCs. Their expression displays a restricted spatial-temporal pattern and their small changes in level can significantly affect directed differentiation and the cell type derived. So far, few assays have been developed to monitor this process. Herein, we provided a mass spectrometry (MS)-based approach for simultaneous and quantitative monitoring of these transcription factors, in an attempt to provide insight into their contributions in hESC differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-021-03160-7DOI Listing

Publication Analysis

Top Keywords

transcription factors
12
simultaneous quantitative
8
quantitative monitoring
8
monitoring transcription
8
human embryonic
8
embryonic stem
8
stem cells
8
differentiation
5
factors
4
factors human
4

Similar Publications

Myricetin exposure reduces PC differentiation in vitro in primary human B cells.

Mol Med

January 2025

Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, 11030, USA.

Background: The process of B cell activation and plasma cell (PC) formation involves morphological, transcriptional, and metabolic changes in the B cell. Blocking or reducing PC differentiation is one approach to treat autoimmune diseases that are characterized by the presence of pathogenic autoantibodies. Recent studies have suggested the potential of myricetin, a natural flavonoid with anti-inflammatory and antioxidant properties, to block or reduce PC differentiation.

View Article and Find Full Text PDF

Bluetongue virus (BTV) has emerged as a significant concern in Oman, affecting various animal species, including camels. This cross-sectional study aimed to assess the seroprevalence of BTV in camels and explore the associated risk factors within the northern region of Oman. Between October 2016 and March 2017, 439 serum samples and 100 blood samples were collected from camels in five governorates.

View Article and Find Full Text PDF

Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding.

View Article and Find Full Text PDF

A bHLH transcription factor RrUNE12 regulates salt tolerance and promotes ascorbate synthesis.

Plant Cell Rep

January 2025

Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.

RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.

View Article and Find Full Text PDF

Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!