The epidermis of Paralvinella grasslei (Polychaete, Annelida) is covered by an extracellular matrix, the cuticle, mainly composed as in other annelids of superimposed layers of non-striated collagen fibrils. The collagen fibrils of annelid cuticle are shown to be composed of parallel and sinuous microfibrils (thin sections and freeze-fracture replicas). The 3-dimensional organization of collagen is characterized by 2 different types of geometrical order: (a) Fibrils form a quasiorthogonal network, whose structure is comparable to that of a "plywood"; (b) Fibrils are helical, and goniometric studies show that microfibrils present a definite order within each fibril, which is termed "cylindrical twist". These 2 characteristics are those which have recently been evidenced in "blue phases", i.e., liquid crystals which are closely related to cholesteric liquid crystalline phases. Non-fluid analogues of cholesteric liquids are widespread among invertebrate cuticles and the presence of blue phase analogues suggests that a self-assembly mechanisms is involved in cuticle morpho-genesis, which is derived from that governing blue phase growth. The cuticular network presents local rearrangements of fibrils called "defects", despite the fact that they are elaborate structures which trigonal and pentagonal singularities. Branched fibrils are regularly observed. We discuss the involvement of these pattern disruptions in the cuticle growth process.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!