Low-energy magnons in the chiral ferrimagnet CuOSeO: A coarse-grained approach.

Phys Rev B

Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.

Published: January 2020

We report a comprehensive neutron scattering study of low energy magnetic excitations in the breathing pyrochlore helimagnetic CuOSeO. Fully documenting the four lowest energy magnetic modes that leave the ferrimagnetic configuration of the "strong tetrahedra" intact ( meV), we find gapless quadratic dispersion at the point for energies above 0.2 meV, two doublets separated by 1.6(2) meV at the point, and a bounded continuum at the point. Our constrained rigid spin cluster model relates these features to Dzyaloshinskii-Moriya (DM) interactions and the incommensurate helical ground state. Combining conventional spin wave theory with a spin cluster form factor accurately reproduces the measured equal time structure factor through multiple Brillouin zones. An effective spin Hamiltonian describing complex anisotropic intercluster interactions is obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919739PMC
http://dx.doi.org/10.1103/PhysRevB.101.144411DOI Listing

Publication Analysis

Top Keywords

energy magnetic
8
spin cluster
8
low-energy magnons
4
magnons chiral
4
chiral ferrimagnet
4
ferrimagnet cuoseo
4
cuoseo coarse-grained
4
coarse-grained approach
4
approach report
4
report comprehensive
4

Similar Publications

Optimisation of the crystallisation process through staggered cooling in a nonvibrating granular system.

Sci Rep

January 2025

Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, 42184, Mineral de la Reforma, Hidalgo, México.

We study experimentally the optimisation of the crystallisation process through a 2D-dimensional system of magnetic particles under an oscillating magnetic field. The time-dependent magnetic field fluidises the system, and by varying its magnitude, the effective temperature of the system is controlled. The system exhibits fluid-like behaviour when the effective temperature is high and evolves to a crystalline arrangement when the temperature is slowly lowered in linear cooling.

View Article and Find Full Text PDF

Antivortices have potential applications in future nano-functional devices, yet the formation of isolated antivortices traditionally requires nanoscale dimensions and near-zero magnetocrystalline anisotropy, limiting their broader application. Here, we propose an approach to forming antivortices in multiferroic ε-FeO with the coalescence of misaligned grains. By leveraging misaligned crystal domains, the large magnetocrystalline anisotropy energy is counterbalanced, thereby stabilizing the ground state of the antivortex.

View Article and Find Full Text PDF

The reduced dimensionality of thin transition metal dihalide films on single-crystal surfaces unlocks a diverse range of magnetic and electronic properties. However, achieving stoichiometric monolayer islands requires precise control over the growth conditions. In this study, we employ scanning probe microscopy to investigate the growth of MnI on Ag(111) via single-crucible evaporation.

View Article and Find Full Text PDF

Two-dimensional (2D) materials hold great promise for the next-generation optoelectronics applications, many of which, including solar cell, rely on the efficient dissociation of exciton into free charge carriers. However, photoexcitation in atomically thin 2D semiconductors typically produces exciton with a binding energy of ~500 meV, an order of magnitude larger than thermal energy at room temperature. This inefficient exciton dissociation can limit the efficiency of photovoltaics.

View Article and Find Full Text PDF

Collective modes in terahertz field response of disordered superconductors.

J Phys Condens Matter

January 2025

Department of Physics, Kent State University, 008 Smith Hall, Kent, Ohio, 44240, UNITED STATES.

We consider a problem of nonlinear response to an external electromagnetic radiation in conventional disordered superconductors which contain a small amount of weak magnetic impurities. We focus on the diffusive limit and use Usadel equation to analyze the excitation energy and dispersion relation of the collective modes. We determine the resonant frequency and dispersion of both amplitude (Schmidt-Higgs) and phase (Carlson-Goldman) modes for moderate strength of magnetic scattering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!