AI Article Synopsis

  • This study presents a new variant of oblique plane microscopy (OPM) that enhances the field of view (FOV) from the typical 1×1 mm to around 6×5×0.6 mm, enabling higher-resolution 3D imaging of larger samples.
  • Researchers implemented an innovative optical design that improves light collecting efficiency and corrects image distortion using a telescope made of cylindrical lenses.
  • The system's versatility allows for easy switching between low and medium numerical aperture objective lenses, successfully visualizing detailed structures in zebrafish larvae, mouse cortex, and neurons in C. elegans.

Article Abstract

Background: Conventional light sheet fluorescence microscopy (LSFM), or selective plane illumination microscopy (SPIM), enables high-resolution 3D imaging over a large volume by using two orthogonally aligned objective lenses to decouple excitation and emission. The recent development of oblique plane microscopy (OPM) simplifies LSFM design with only one single objective lens, by using off-axis excitation and remote focusing. However, most reports on OPM have a limited microscopic field of view (FOV), typically within 1×1 mm. Our goal is to overcome the limitation with a new variant of OPM to achieve a mesoscopic FOV.

Methods: We implemented an optical design of mesoscopic scanning OPM to allow the use of low numerical aperture (NA) objective lenses. The angle of the intermediate image before the remote focusing system was increased by a demagnification under Scheimpflug condition such that the light collecting efficiency in the remote focusing system was significantly improved. A telescope composed of cylindrical lenses was used to correct the distorted image caused by the demagnification design. We characterized the 3D resolutions and imaging volume by imaging fluorescent microspheres, and demonstrated the volumetric imaging on intact whole zebrafish larvae, mouse cortex, and multiple ().

Results: We demonstrate a mesoscopic FOV up to ~6×5×0.6 mm volumetric imaging, the largest reported FOV by OPM so far. The angle of the intermediate image plane is independent of the magnification as long as the size of the pupil aperture of the objectives is the same. As a result, the system is highly versatile, allowing simple switching between different objective lenses with low (10×, NA 0.3) and median NA (20×, NA 0.5). Detailed microvasculature in zebrafish larvae, mouse cortex, and neurons in C. elegans are clearly visualized in 3D.

Conclusions: The proposed mesoscopic scanning OPM allows using low NA objectives such that centimeter-level FOV volumetric imaging can be achieved. With the extended FOV, simple sample mounting protocol, and the versatility of changeable FOVs/resolutions, our system will be ready for the varieties of applications requiring in vivo volumetric imaging over large length scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829172PMC
http://dx.doi.org/10.21037/qims-20-806DOI Listing

Publication Analysis

Top Keywords

volumetric imaging
20
objective lenses
16
mesoscopic scanning
12
remote focusing
12
imaging
8
oblique plane
8
plane microscopy
8
imaging large
8
scanning opm
8
angle intermediate
8

Similar Publications

Introduction: Superior orbital fissure syndrome (SOFS) is a rare condition that involves damage to multiple structures within the superior orbital fissure, often caused by trauma, inflammation, or tumors. Lung adenocarcinoma, known for its propensity to metastasize, can lead to orbital metastases, which can manifest as SOFS. This case underscores the diagnostic and therapeutic challenges associated with such rare metastatic presentations.

View Article and Find Full Text PDF

Artificial intelligence models assisting physicians in quantifying pancreatic necrosis in acute pancreatitis.

Quant Imaging Med Surg

January 2025

Department of Intensive Care Unit, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Background: Acute pancreatitis (AP) is a potentially life-threatening condition characterized by inflammation of the pancreas, which can lead to complications such as pancreatic necrosis. The modified computed tomography severity index (MCTSI) is a widely used tool for assessing the severity of AP, particularly the extent of pancreatic necrosis. The accurate and timely assessment of the necrosis volume is crucial in guiding treatment decisions and improving patient outcomes.

View Article and Find Full Text PDF

Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).

Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.

View Article and Find Full Text PDF

Applying aperture-based intensity map in automated plan review of volumetric modulated arc therapy for lung cancer patients.

Quant Imaging Med Surg

January 2025

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Volumetric modulated arc therapy (VMAT) is a popular radiotherapy technique in the clinic. As consisting of hundreds of control points in a VMAT plan it is more complex and time consuming than those conventional treatment modalities, such as intensity modulated radiation therapy. To improve the efficiency and accuracy of its quality assurance procedure, a novel automated anomaly detection method was proposed.

View Article and Find Full Text PDF

Background: Tissue clearing combined with light-sheet microscopy is gaining popularity among neuroscientists interested in unbiased assessment of their samples in 3D volume. However, the analysis of such data remains a challenge. ClearMap and CellFinder are tools for analyzing neuronal activity maps in an intact volume of cleared mouse brains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!