A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimized anti-reflection core-shell microspheres for enhanced optical trapping by structured light beams. | LitMetric

In this paper, we study the optical trapping of anti-reflection core-shell microspheres by regular Gaussian beam and several structured beams including radially polarized Gaussian, petal, and hard-aperture-truncated circular Airy beams. We show that using an appropriate anti-reflection core-shell microsphere for the optical trapping by several structured light beams can dramatically enhance the strength of the trap compared to the trapping by the common Gaussian beam. The optimal core-shell thickness ratio that minimizes the scattering force is obtained for polystyrene-silica and anatase-amorphous titania microspheres, such that the core-shells act as anti-reflection coated microspheres. We show that the trapping strength of the anti-reflection coated microparticles trapped by the common Gaussian beam is enhanced up to 2-fold compared to that of trapped uncoated microparticles, while the trapping of anti-reflection coated microparticles, by the radially polarized beam, is strengthened up to 4-fold in comparison to that of the trapped uncoated microparticles by the Gaussian beam. Our results indicate that for anatase-amorphous titania microparticles highest trap strength is obtained by radially polarized beam, while for the polystyrene-silica microparticles, the strongest trapping is achieved by the petal beam.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925665PMC
http://dx.doi.org/10.1038/s41598-021-84665-0DOI Listing

Publication Analysis

Top Keywords

gaussian beam
16
anti-reflection core-shell
12
optical trapping
12
radially polarized
12
anti-reflection coated
12
core-shell microspheres
8
trapping structured
8
structured light
8
light beams
8
trapping anti-reflection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!