The mouse is the most important mammalian model in life science research and the behavior of the mouse is a key read-out of experimental interventions and genetic manipulations. To serve this purpose a solid understanding of the mouse normal behavior is a prerequisite. Using 14-19 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique, evidence is here provided for a highly significant circannual oscillation in spontaneous activity (1-2 SD of the mean, on average 65% higher during peak of highs than lows; P = 7E-50) of male and female C57BL/6 mice held under constant conditions. The periodicity of this hitherto not recognized oscillation is in the range of 2-4 months (average estimate was 97 days across cohorts of cages). It off-sets responses to environmental stimuli and co-varies with the feeding behavior but does not significantly alter the preference for being active during the dark hours. The absence of coordination of this rhythmicity between cages with mice or seasons of the year suggest that the oscillation of physical activity is generated by a free-running intrinsic oscillator devoid of external timer. Due to the magnitude of this rhythmic variation it may be a serious confounder in experiments on mice if left unrecognized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925671 | PMC |
http://dx.doi.org/10.1038/s41598-021-84141-9 | DOI Listing |
Animal Model Exp Med
January 2025
School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
Background: Quantifying the rich home-cage activities of tree shrews provides a reliable basis for understanding their daily routines and building disease models. However, due to the lack of effective behavioral methods, most efforts on tree shrew behavior are limited to simple measures, resulting in the loss of much behavioral information.
Methods: To address this issue, we present a deep learning (DL) approach to achieve markerless pose estimation and recognize multiple spontaneous behaviors of tree shrews, including drinking, eating, resting, and staying in the dark house, etc.
Hum Mol Genet
January 2025
Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan.
Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Introduction: Lung cancer is the first cause of cancer death in the world, due to a delayed diagnosis and the absence of efficacy therapies. KRAS mutation occurs in 25% of all lung cancers and the concomitant mutations in LKB1 determine aggressive subtypes of these tumors. The improvement of therapeutical options for KRASG12C mutations has increased the possibility of treating these tumors, but resistance to these therapies has emerged.
View Article and Find Full Text PDFeNeuro
January 2025
Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201.
Cannabinoid receptor-1 (CB1R) signaling in the dorsal striatum regulates the shift from flexible to habitual behavior in instrumental outcome devaluation. Based on prior work establishing individual, sex, and experience-dependent differences in Pavlovian behaviors, we predicted a role for dorsomedial striatum (DMS) CB1R signaling in driving rigid responding in Pavlovian autoshaping and outcome devaluation. We trained male and female Long Evans rats in Pavlovian Lever Autoshaping (PLA).
View Article and Find Full Text PDFFront Aging Neurosci
December 2024
Medical School, Kunming University of Science and Technology, Kunming, China.
Background: As a non drug and non invasive therapy, both transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) may modulate cortical rhythms and serve as potentially effective approaches to cognitive decline in Alzheimer's disease (AD). However, studies using animal models of AD are quite limited.
Methods: This study investigates the aftereffects of tACS and tDCS on brain EEG activity and associated exploratory behavior in normal aged and APP/PS1 transgenic mice (15 months old).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!