A key question regarding the unconventional superconductivity of [Formula: see text] remains whether the order parameter is single- or two-component. Under a hypothesis of two-component superconductivity, uniaxial pressure is expected to lift their degeneracy, resulting in a split transition. The most direct and fundamental probe of a split transition is heat capacity. Here, we report measurement of heat capacity of samples subject to large and highly homogeneous uniaxial pressure. We place an upper limit on the heat-capacity signature of any second transition of a few percent of that of the primary superconducting transition. The normalized jump in heat capacity, [Formula: see text], grows smoothly as a function of uniaxial pressure, favoring order parameters which are allowed to maximize in the same part of the Brillouin zone as the well-studied van Hove singularity. Thanks to the high precision of our measurements, these findings place stringent constraints on theories of the superconductivity of [Formula: see text].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958258PMC
http://dx.doi.org/10.1073/pnas.2020492118DOI Listing

Publication Analysis

Top Keywords

uniaxial pressure
16
[formula text]
12
heat capacity
12
superconductivity [formula
8
split transition
8
high-sensitivity heat-capacity
4
heat-capacity measurements
4
measurements srruo
4
uniaxial
4
srruo uniaxial
4

Similar Publications

Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.

View Article and Find Full Text PDF

The extraction of coal seams with high gas content and low permeability presents significant challenges, particularly due to the extended period required for gas extraction to meet safety standards and the inherently low extraction efficiency. Hydraulic fracturing technology, widely employed in the permeability enhancement of soft and low-permeability coal seams, serves as a key intervention. This study focuses on the high-rank raw coal from the No.

View Article and Find Full Text PDF

Hexagonal diamond (HD) was reported 60 years ago and has attracted extensive attention owing to its ultrahigh theoretical hardness, 58% superior to its cubic counterpart. However, to date, synthesizing pure HD under high-pressure and high-temperature (HPHT) remains unsuccessful due to the limitations of understanding the formation mechanism. In this work, employing a systematic molecular dynamics simulation, we directly observe the graphite-to-HD transition in a nucleation-growth mechanism.

View Article and Find Full Text PDF

The mechanical behavior and fracture mechanisms of deep fractured rocks under explosive dynamic loads are critical for understanding rock instability in engineering applications such as blasting operations. This study aims to investigate how the presence of pre-existing cracks and different stress states affect the mechanical properties and fracture patterns of rock-like specimens under dynamic loading conditions. We utilized a Split Hopkinson Pressure Bar (SHPB) with an active confining pressure loading device to conduct impact compression tests on rock-like specimens containing pre-existing cracks.

View Article and Find Full Text PDF

Hot Uniaxial Pressing and Pressureless Sintering of AlCrCuFeMnNi Complex Concentrated Alloy-A Comparative Study.

Materials (Basel)

November 2024

Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.

External pressure is often applied during sintering to obtain materials with improved properties. For complex concentrated alloys (CCAs), this processing step is commonly performed in vacuum. However, this can promote the evaporation of elements and increase the oxide content, thereby degrading the properties of the alloy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!