Parameters such as type and concentration of the active compound, exposure time, application temperature, and organic load presence influence the antimicrobial action of sanitizers, although there is little data in the literature. Thus, this study aimed to evaluate the antifungal efficacy of different chemical sanitizers under different conditions according to the European Committee for Standardization (CEN). Aspergillus brasiliensis (ATCC 16404) was exposed to four compounds (benzalkonium chloride, iodine, peracetic acid, and sodium hypochlorite) at two different concentrations (minimum and maximum described on the product label), different exposure times (5, 10, and 15 min), temperatures (10, 20, 30, and 40 °C), and the presence or absence of an organic load. All parameters, including the type of sanitizer, influenced the antifungal efficacy of the tested compounds. Peracetic acid and benzalkonium chloride were the best antifungal sanitizers. The efficacy of peracetic acid increased as temperatures rose, although the opposite effect was observed for benzalkonium chloride. Sodium hypochlorite was ineffective under all tested conditions. In general, 5 min of sanitizer exposure is not enough and >10 min are necessary for effective fungal inactivation. The presence of organic load reduced sanitizer efficacy in most of the tested situations, and when comparing the efficacy of each compound in the presence and absence of an organic load, a difference of up to 1.5 log CFU was observed. The lowest concentration recommended on the sanitizer label is ineffective for 99.9% fungal inactivation, even at the highest exposure time (15 min) or under the best conditions of temperature and organic load absence. Knowledge of the influence exerted by these parameters contributes to successful hygiene since the person responsible for the sanitization process in the food facility can select and apply a certain compound in the most favorable conditions for maximum antifungal efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2021.103740 | DOI Listing |
Infect Control Hosp Epidemiol
January 2025
Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
In laboratory testing, a novel hydrogen peroxide gas plasma endoscope sterilizer consistently reduced vegetative organisms, but not bacterial spores, to undetectable levels in the presence of high organism load (≥6.5 log) and organic material and salts. These findings highlight the importance of meticulous cleaning of endoscopes prior to sterilization.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.
View Article and Find Full Text PDFMicroorganisms
December 2024
Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Spain.
Seaweed is a valuable natural resource, but drift or beach-cast seaweed is considered a waste product. Although seaweed is traditionally used as an organic amendment, vermicomposting has the potential to transform the material into valuable organic fertilizer, thereby enhancing its microbial properties. This study aimed to investigate the dynamics of the taxonomic and functional bacterial communities in seaweed during the vermicomposting process by high-throughput sequencing of 16S rRNA gene amplicons.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Engineering, Agriculture Faculty, Tekirdağ Namık Kemal University, Tekirdağ 59030, Türkiye.
The aims of this study were to improve the functional and nutritional properties of fermented black carrot juice by using sweet and acid whey in the production of fermented black carrot juice, to transform whey into a value-added product and to determine the effect of whey addition on the fermentation process. Whey was utilized as a water substitute in the formulation of the beverage prior to fermentation, and five distinct formulations were developed based on the type and proportion of whey (0% whey (control sample), 25% acid whey, 100% acid whey, 25% sweet whey, 100% sweet whey). Microbiological, sensorial, phytochemical, and physicochemical analyses were performed on samples taken during fermentation and on samples fermented and then resting.
View Article and Find Full Text PDFBioresour Technol
January 2025
Huanghe Science and Technology College, No. 94 Hanghai Middle Road, Zhengzhou 450000, PR China.
A short heat treatment (HT, 90 °C-100 °C, 5 min) was applied to two-phase anaerobic digestion (TPAD) of pig manure (PM) to investigate its effect on microbial inactivation in the acidified feedstock during the methanogenic phase. The results showed that no differences in biogas production at organic loading rate (OLR) below 4.28 g volatile solid (VS)/(L·d).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!