In stretchable strain sensors, highly elastic elastomers such as polydimethylsiloxane (PDMS), Ecoflex, and polyurethane are commonly used for binder materials of the nanocomposite and substrates. However, the viscoelastic nature of the elastomers and the interfacial action between nanofillers and binders influence the critical sensor performances, such as repeatability, response, and hysteresis behavior. In this study, we developed a stretchable nanocomposite strain sensor composed of multiwalled carbon nanotubes and a silicone elastomer binder. The effects of binder and substrate materials on the repeatability, response, hysteresis behavior, and long-term endurance of the strain sensors were systematically investigated using stretching, bending, and repeated cyclic bending tests. Three different binder and substrate materials including PDMS, Ecoflex, and a mixture of PDMS/Ecoflex were tested. The stretchable strain sensors showed an excellent linearity and stretchability of more than 130%. Therefore, the long-term endurance of the strain sensors fabricated with Ecoflex binder should be improved. The strain sensors fabricated with Ecoflex binder showed a relatively large variation in electrical resistance during 10,000-cycle bending tests and repeatability errors at large bending angles. The strain sensors fabricated with PDMS binder showed repeatability errors at small bending angles and a slight response delay of 1 second. On the contrary, the strain sensors fabricated with a mixture of PDMS/Ecoflex binder showed excellent repeatability and response characteristics. The PDMS material showed hysteresis behavior; therefore, the strain sensors fabricated with PDMS binder on PDMS substrate exhibited a large hysteresis behavior in the first stretch-release cycle. It was found that the hysteresis behavior of the strain sensors was mainly dependent on substrate materials than on binder materials. The stretchable strain sensors made of the mixture of PDMS/Ecoflex exhibited excellent repeatability, response, hysteresis behavior, and excellent capability in detecting finger and wrist bending.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2021.19133DOI Listing

Publication Analysis

Top Keywords

strain sensors
44
hysteresis behavior
24
sensors fabricated
20
substrate materials
16
repeatability response
16
binder substrate
12
strain
12
stretchable strain
12
response hysteresis
12
mixture pdms/ecoflex
12

Similar Publications

Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network.

View Article and Find Full Text PDF

The study of cell mechanics was significant for understanding cellular physiological functions, the mechanisms of disease occurrence, and the development of novel therapeutic approaches. However, research on the mechanism of mechanical strain action at the single-cell level was relatively lacking. Herein, we developed a serpentine stretchable sensor array capable of exerting precise mechanical strain on cells and monitoring extracellular pH (pHe) changes at single cell level.

View Article and Find Full Text PDF

In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.

View Article and Find Full Text PDF

Role of in Filamentous Growth and Pathogenicity of .

J Fungi (Basel)

November 2024

Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.

is a dimorphic fungus that specifically infects , causing stem swelling and the formation of an edible fleshy stem known as jiaobai. The pathogenicity of is closely associated with the development of jiaobai and phenotypic differentiation. Msb2 acts as a key upstream sensor in the MAPK (mitogen-activated protein kinase) signaling pathway, playing critical roles in fungal hyphal growth, osmotic regulation, maintenance of cell wall integrity, temperature adaptation, and pathogenicity.

View Article and Find Full Text PDF

Silicon-Enhanced PVA Hydrogels in Flexible Sensors: Mechanism, Applications, and Recycling.

Gels

December 2024

Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

Hydrogels, known for their outstanding water absorption, flexibility, and biocompatibility, have been widely utilized in various fields. Nevertheless, their application is still limited by their relatively low mechanical performance. This study has successfully developed a dual-network hydrogel with exceptional mechanical properties by embedding amino-functionalized polysiloxane (APSi) networks into a polyvinyl alcohol (PVA) matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!