Resistance to toxins in insects is generally thought of as their own genetic trait, but recent studies have revealed that gut microorganisms could mediate resistance by detoxifying phytotoxins and man-made insecticides. By laboratory experiments, we here discovered a striking example of gut symbiont-mediated insecticide resistance in a serious rice pest, . The rice bug horizontally acquired fenitrothion-degrading through oral infection and housed it in midgut crypts. Fenitrothion-degradation test revealed that the gut-colonizing retains a high degrading activity of the organophosphate compound in the insect gut. This gut symbiosis remarkably increased resistance against fenitrothion treatment in the host rice bug. Considering that many stinkbug pests are associated with soil-derived , our finding strongly supports that a number of stinkbug species could gain resistance against insecticide simply by acquiring insecticide-degrading gut bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086944PMC
http://dx.doi.org/10.1098/rsbl.2020.0780DOI Listing

Publication Analysis

Top Keywords

insecticide resistance
8
gut symbiosis
8
rice pest
8
rice bug
8
gut
6
resistance
5
resistance governed
4
governed gut
4
rice
4
symbiosis rice
4

Similar Publications

Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) is an invasive agricultural pest with developed resistance to abamectin in some strains due to frequent treatment with the pesticide. In this study, we examined differentially expressed proteins (DEPs) between abamectin-resistant (Aba; under abamectin selective pressure) and susceptible strains (Aba; without abamectin selective pressure) of F. occidentalis.

View Article and Find Full Text PDF

Hygienic insecticides are applied directly to the living environment and are closely related to human life. Dimefluthrin (DIM) is one of the most widely used hygienic insecticides globally. However, with increasing mosquito resistance, both the concentration and duration of DIM usage have risen, prompting public concerns regarding its neurotoxic risks, especially for immunocompromised children.

View Article and Find Full Text PDF

With their diverse species, mosquitoes are known to transmit the causal agents of diseases such as malaria, dengue, and yellow fever. Their high adaptability, attraction to humans, and variable adult behaviors make them a significant health concern. The focus on Aedes aegypti is significant for reducing vector-human contacts, monitoring insecticide resistance, and developing innovative vector management strategies.

View Article and Find Full Text PDF

Establishing best practices for insect resistance management: a new paradigm for genetically engineered toxins in cotton expressing Mpp51Aa2.

J Econ Entomol

January 2025

Department of Entomology and Plant Pathology and the North Carolina Plant Sciences Institute, NC State University, Raleigh, NC, USA.

Debate over resistance management tactics for genetically engineered (GE) crops expressing insecticidal toxins is not new. For several decades, researchers, regulators, and agricultural industry scientists have developed strategies to limit the evolution of resistance in populations of lepidopteran and coleopteran pests. A key attribute of many of these events was insecticide resistance management (IRM) strategies designed around a presumed high-dose expression sufficient to kill 99.

View Article and Find Full Text PDF

House flies, Musca domestica L. (Diptera: Muscidae), are commonplace pests in both urban and agricultural settings. The potential for house flies as vectors of many disease-causing organisms to humans and animals, coupled with their incessant nuisance behaviors toward these hosts has resulted in a desire to manage their populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!