A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchronization of clocks and metronomes: A perturbation analysis based on multiple timescales. | LitMetric

In 1665, Huygens observed that two pendulum clocks hanging from the same board became synchronized in antiphase after hundreds of swings. On the other hand, modern experiments with metronomes placed on a movable platform show that they often tend to synchronize in phase, not antiphase. Here, we study both in-phase and antiphase synchronization in a model of pendulum clocks and metronomes and analyze their long-term dynamics with the tools of perturbation theory. Specifically, we exploit the separation of timescales between the fast oscillations of the individual pendulums and the much slower adjustments of their amplitudes and phases. By scaling the equations appropriately and applying the method of multiple timescales, we derive explicit formulas for the regimes in the parameter space where either antiphase or in-phase synchronization is stable or where both are stable. Although this sort of perturbative analysis is standard in other parts of nonlinear science, surprisingly it has rarely been applied in the context of Huygens's clocks. Unusual features of our approach include its treatment of the escapement mechanism, a small-angle approximation up to cubic order, and both a two- and three-timescale asymptotic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0026335DOI Listing

Publication Analysis

Top Keywords

clocks metronomes
8
multiple timescales
8
pendulum clocks
8
synchronization clocks
4
metronomes perturbation
4
perturbation analysis
4
analysis based
4
based multiple
4
timescales 1665
4
1665 huygens
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!