Cascade of torus birth bifurcations and inverse cascade of Shilnikov attractors merging at the threshold of hyperchaos.

Chaos

Laboratory of Topological Methods in Dynamics, National Research University Higher School of Economics, Bolshaya Pecherskaya str., 25/12, Nizhny Novgorod 603155, Russia.

Published: February 2021

We study the hyperchaos formation scenario in the modified Anishchenko-Astakhov generator. The scenario is connected with the existence of sequence of secondary torus bifurcations of resonant cycles preceding the hyperchaos emergence. This bifurcation cascade leads to the birth of the hierarchy of saddle-focus cycles with a two-dimensional unstable manifold as well as of saddle hyperchaotic sets resulting from the period-doubling cascades of unstable resonant cycles. Hyperchaos is born as a result of an inverse cascade of bifurcations of the emergence of discrete spiral Shilnikov attractors, accompanied by absorbing the cycles constituting this hierarchy.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0038878DOI Listing

Publication Analysis

Top Keywords

inverse cascade
8
shilnikov attractors
8
resonant cycles
8
cascade
4
cascade torus
4
torus birth
4
birth bifurcations
4
bifurcations inverse
4
cascade shilnikov
4
attractors merging
4

Similar Publications

Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive.

View Article and Find Full Text PDF

Deep proximal gradient network for absorption coefficient recovery in photoacoustic tomography.

Phys Med Biol

January 2025

North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.

Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.

View Article and Find Full Text PDF

Purpose Of Review: Regulatory B cells (Bregs) are a key component in the regulation of the immune system. Their immunosuppressive function, which includes limiting the inflammatory cascade, occurs through interactions with other immune cells and the secretion of cytokines, primarily IL-10. As knowledge about B cells continues to expand, their diversity is becoming more recognized, with many subpopulations identified in both human and animal models.

View Article and Find Full Text PDF

Complex networks, from neuronal assemblies to social systems, can exhibit abrupt, system-wide transitions without external forcing. These endogenously generated "noise-induced transitions" emerge from the intricate interplay between network structure and local dynamics, yet their underlying mechanisms remain elusive. Our study unveils two critical roles that nodes play in catalyzing these transitions within dynamical networks governed by the Boltzmann-Gibbs distribution.

View Article and Find Full Text PDF

Observation of an Inverse Turbulent-Wave Cascade in a Driven Quantum Gas.

Phys Rev Lett

December 2024

Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

We observe an inverse turbulent-wave cascade, from small to large length scales, in a driven homogeneous 2D Bose gas. Starting with an equilibrium condensate, we drive the gas isotropically on a length scale much smaller than its size, and observe a nonthermal population of modes with wavelengths larger than the drive one. At long drive times, the gas exhibits a steady nonthermal momentum distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!