Urea is the most used fertilizer around the world as the main source of nitrogen to soil and plants. However, the administration of nitrogen dosage is critical, as its excess can be harmful to the environment. Therefore, the encapsulation of urea to achieve control on its release rates has been considered in several areas. In this work, encapsulation of urea by biodegradable polymer poly(3-hydroxybutyrate) (PHB) and its nanocomposites, namely PHB/MMT and PHB/OMMT, producing microcapsules by emulsion method is carried out. MMT and OMMT refer to Brazilian clays in a natural state and organophilized, respectively. In addition, the microcapsules are thus prepared to have their physicochemical characteristics investigated, then tested for biodegradation. Increment of microcapsules' crystallinity due to the increased amount of poly(vinylacetate) (PVA), as emulsifier agent in the continuous phase, was confirmed by X-ray diffractometry (XRD) and atomic force microscopy (AFM). The presence of urea within microcapsules was verified by XRD, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The soil biodegradation assessments showed that PHB/OMMT microcapsules present higher degradation rates in sandy soils. The overall results suggest that the composites performed better than neat PHB and are very promising; moreover, PHB/OMMT microcapsules proved to be the best candidate for the controlled-release of urea in soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956393 | PMC |
http://dx.doi.org/10.3390/polym13050722 | DOI Listing |
Int J Pharm
January 2025
Institut Galien Paris-Saclay, CNRS UMR8612, 17 avenue des Sciences, 91400 Orsay, France. Electronic address:
Multiparticulate drug delivery systems offer advantages in controlled release, dose flexibility, and personalized medicine. Fusion prilling, a process that produces spherical lipid-based microparticles through vibrating nozzles, is gaining interest in the field. This study aims to explore the use of fusion prilling to encapsulate crystallizable water-in-oil emulsions, enabling the incorporation of hydrophilic active pharmaceutical ingredients (APIs) within lipid matrices.
View Article and Find Full Text PDFSmall
December 2024
Université de Lorraine, CNRS, IJL, Epinal, F-88000, France.
The rational design of metal-nitrogen-doped carbons (M-N-C) from available and cost-effective sources featuring high electrocatalytic performance and stability is attractive for the development of viable low-temperature fuel cells. Herein, mimosa tannin, an abundant polyphenol easily extracted from the Mimosa plant, is used as a natural carbon source to produce a tannin-Fe(III) coordination complex. This process is assisted by Pluronic F127, which acts as both a surfactant and a promoter of Fe-N active sites.
View Article and Find Full Text PDFBiointerphases
November 2024
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
Self-healing cement takes advantage of microbial induced carbonate precipitation (MICP), a meritorious biological process, to achieve automatic healing of cement cracks. In this study, two beneficial factors, optimization of the bacteria culture medium and encapsulation of bacterial spores, were used to improve the MICP efficiency of Sporosarcina pasteurii in self-healing cement. On the one hand, in medium optimization, we compared the growth of Sporosarcina pasteurii fed with two generally used nitrogen sources, e.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China; Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China; MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China. Electronic address:
Liver fibrosis is a pathological condition marked by the excessive buildup of extracellular matrix primarily resulting from the transformation of quiescent hepatic stellate cells (HSCs) to myofibroblastic (MF) phenotype and their resultant over-expansion. Activated HSCs completely rely on their hyperactive mitochondria to supply the energy and biomass for their rapid proliferation and collagen secretion, so an intervention targeting their mitochondria can effectively restrict their pathological amplification and contribution to liver fibrosis. Here we tried sorafenib, a drug that plays anticancer roles by inducing the disruption and loss of mitochondrial functions, to reach an antifibrotic goal.
View Article and Find Full Text PDFBiomed Mater
December 2024
School of Parmacy, Jiangsu Food and pharmaceutical Science College, Huai'an, Jiangsu 223003, People's Republic of China.
Due to the lack of specific symptoms, hepatocellular carcinoma (HCC) is often detected in advanced stages. However, pharmacological systemic therapy, a common clinical treatment for advanced HCC, is prone to serious toxic side effects. To address these issues, we designed a pH-sensitive sorafenib and schisandrin B micelle modified by methotrexate (MTX-SOR/SchB micelles), a nanosystem that combines the advantages of targeted delivery and pH sensitivity, and is capable of improving drug bioavailability and mitigating drug toxic side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!