https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=33652885&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3365288520240331
2079-49911132021Feb26Nanomaterials (Basel, Switzerland)Nanomaterials (Basel)Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications.59210.3390/nano11030592Owing to strong plasmonic absorption and excellent biocompatibility, gold nanostructures are among best candidates for photoacoustic bioimaging and photothermal therapy, but such applications require ultrapure Au-based nanoformulations of complex geometry (core-shells, nanorods) in order to shift the absorption band toward the region of relative tissue transparency (650-1000 nm). Here, we present a methodology for the fabrication of Si@Au core-satellite nanostructures, comprising of a Si core covered with small Au nanoparticles (NP), based on laser ablative synthesis of Si and Au NPs in water/ethanol solutions, followed by a chemical modification of the Si NPs by 3-aminopropyltrimethoxysilane (APTMS) and their subsequent decoration by the Au NPs. We show that the formed core-satellites have a red-shifted plasmonic absorption feature compared to that of pure Au NPs (520 nm), with the position of the peak depending on APTMS amount, water-ethanol solvent percentage and Si-Au volume ratio. As an example, even relatively small 40-nm core-satellites (34 nm Si core + 4 nm Au shell) provided a much red shifted peak centered around 610 nm and having a large tail over 700 nm. The generation of the plasmonic peak is confirmed by modeling of Si@Au core-shells of relevant parameters via Mie theory. Being relatively small and exempt of any toxic impurity due to ultraclean laser synthesis, the Si@Au core-satellites promise a major advancement of imaging and phototherapy modalities based on plasmonic properties of nanomaterials.Al-KattanAhmedA0000-0003-2454-8436Aix-Marseille University, CNRS, LP3, Campus de Luminy, 13013 Marseille, France.TselikovGlebGAix-Marseille University, CNRS, LP3, Campus de Luminy, 13013 Marseille, France.Moscow Institute of Physics and Technology, Center for Photonics and 2D Materials, 141700 Dolgoprudny, Russia.MetwallyKhaledKAix-Marseille University, CNRS, LMA, 13013 Marseille, France.Aix-Marseille University, CNRS, Institut Fresnel, Centrale Marseille, 13013 Marseille, France.PopovAnton AAA0000-0001-8902-0371Aix-Marseille University, CNRS, LP3, Campus de Luminy, 13013 Marseille, France.MEPhI, Bio-Nanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe sh., 115409 Moscow, Russia.MensahSergeSAix-Marseille University, CNRS, LMA, 13013 Marseille, France.KabashinAndrei VAV0000-0003-1549-7198Aix-Marseille University, CNRS, LP3, Campus de Luminy, 13013 Marseille, France.MEPhI, Bio-Nanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe sh., 115409 Moscow, Russia.engGravity projectITMO Aviesan "National Alliance for the Life Sciences & Health"19-72-30012Russian Science FoundationJournal Article20210226
SwitzerlandNanomaterials (Basel)1016102162079-4991Mie theorySi@Au core-satellitebiomedical applicationscore-shellplasmonic nanoparticlespulsed laser ablation in liquidsThe authors declare no conflict of interest.
2021127202121820212222021331120213460202134612021226epublish33652885PMC799691510.3390/nano11030592nano11030592Dreaden E.C., Alkilany A.M., Huang X., Murphy C.J., El-Sayed M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012;41:2740–2779. doi: 10.1039/C1CS15237H.10.1039/C1CS15237HPMC587601422109657Huang X., El-Sayed I.H., Qian W., El-Sayed M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006;128:2115–2120. doi: 10.1021/ja057254a.10.1021/ja057254a16464114Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., Hazle J.D., Halas N.J., West J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA. 2003;100:13549–13554. doi: 10.1073/pnas.2232479100.10.1073/pnas.2232479100PMC26385114597719Loo C., Lowery A., Halas N., West J., Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5:709–711. doi: 10.1021/nl050127s.10.1021/nl050127s15826113Sokolov K., Follen M., Aaron J., Pavlova I., Malpica A., Lotan R., Richards-Kortum R. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63:1999–2004.12727808Gobin A.M., Lee M.H., Halas N.J., James W.D., Drezek R.A., West J.L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007;7:1929–1934. doi: 10.1021/nl070610y.10.1021/nl070610y17550297Wang Y., Xie X., Wang X., Ku G., Gill K.L., O’Neal D.P., Stoica G., Wang L.V. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 2004;4:1689–1692. doi: 10.1021/nl049126a.10.1021/nl049126aGao N., Chen Y., Li L., Guan Z., Zhao T., Zhou N., Yuan P., Yao S.Q., Xu Q.-H. Shape-dependent two-photon photoluminescence of single gold nanoparticles. J. Phys. Chem. C. 2014;118:13904–13911. doi: 10.1021/jp502038v.10.1021/jp502038vDasgupta S., Auth T., Gompper G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 2014;14:687–693. doi: 10.1021/nl403949h.10.1021/nl403949h24383757Oldenburg S.J., Averitt D., Westcott S.L., Halas N.J. Nanoengineering of optical resonances. Chem. Phys. Lett. 1998;288:243–247. doi: 10.1016/S0009-2614(98)00277-2.10.1016/S0009-2614(98)00277-2Yu M., Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9:6655–6674. doi: 10.1021/acsnano.5b01320.10.1021/acsnano.5b01320PMC495557526149184James W.D., Hirsch L.R., West J.L., O’Neal P.D., Payne J.D. Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J. Radioanal. Nucl. Chem. 2007;271:455–459. doi: 10.1007/s10967-007-0230-1.10.1007/s10967-007-0230-1Lv W., Phelan P.E., Swaminathan R., Otanicar T.P., Taylor R.A. Multifunctional core-shell nanoparticle suspensions for efficient absorption. J. Sol. Energy Eng. 2013;135:021004. doi: 10.1115/1.4007845.10.1115/1.4007845Chaabani W., Chehaidar A., Plain J. Comparative theoretical study of the optical properties of silicon/gold, silica/gold core/shell and gold spherical nanoparticles. Plasmonics. 2016;11:1525–1535. doi: 10.1007/s11468-016-0206-5.10.1007/s11468-016-0206-5Kabashin A.V., Delaporte P., Grojo D., Torres R., Sarnet T., Sentis M. Nanofabrication with pulsed lasers. Nanoscale Res. Lett. 2010;5:454–463. doi: 10.1007/s11671-010-9543-z.10.1007/s11671-010-9543-zPMC289420020672069Zhang D., Gökce B., Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017;117:3990–4103. doi: 10.1021/acs.chemrev.6b00468.10.1021/acs.chemrev.6b0046828191931Geohegan D.B., Puretzky A.A., Duscher G., Pennycook S.J. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation. Appl. Phys. Lett. 1998;72:2987–2989. doi: 10.1063/1.121516.10.1063/1.121516Kabashin A.V., Meunier M. Visible Photoluminescence from Nanostructured Si-Based Layers Produced by Air Optical Breakdown on Silicon. Appl. Phys. Lett. 2003;82:1619–1621. doi: 10.1063/1.1557752.10.1063/1.1557752Kabashin A.V., Meunier M. Laser-induced treatment of silicon in air and formation of Si/SiOx photoluminescent nanostructured layers. Mater. Sci. Eng. B. 2003;101:60–64. doi: 10.1016/S0921-5107(02)00651-7.10.1016/S0921-5107(02)00651-7Fojtik A., Henglein A. Laser Ablation of Films and Suspended Particles in Solvent-Formation of Cluster and Colloid Solutions. Ber. Bunsenges. Phys. Chem. 1993;97:252.Dolgaev S.I., Simakin A.V., Vornov V.V., Shafeev G.A., Bozon-Verduraz F. Nanoparticles Produced by Laser Ablation of Solids in Liquid Environment. Appl. Surf. Sci. 2002;186:546–551. doi: 10.1016/S0169-4332(01)00634-1.10.1016/S0169-4332(01)00634-1Kabashin V.K., Meunier M. Synthesis of Colloidal Nanoparticles during Femtosecond Laser Ablation of Gold in Water. J. Appl. Phys. 2003;94:7941. doi: 10.1063/1.1626793.10.1063/1.1626793Kabashin A.V., Timoshenko V.Y. What Theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer? Nanomedicine. 2016;11:2247–2250. doi: 10.2217/nnm-2016-0228.10.2217/nnm-2016-022827527580Kabashin A.V., Singh A., Swihart M.T., Zavestovskaya I.N., Prasad P.N. Laser-processed nanosilicon: A multifunctional nanomaterial for energy and healthcare. ACS Nano. 2019;13:9841–9867. doi: 10.1021/acsnano.9b04610.10.1021/acsnano.9b0461031490658Kabashin V.K., Meunier M. Laser ablation-based synthesis of functionalized colloidal nanomaterials in biocompatible solutions. J. Photochem. Photobiol. A. 2006;182:330–334. doi: 10.1016/j.jphotochem.2006.06.008.10.1016/j.jphotochem.2006.06.008Baati T., Al-Kattan A., Esteve M.A., Njim L., Ryabchikov Y., Chaspoul F., Hammami M., Sentis M., Kabashin A.V., Braguer D. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: In vivo assessment of safety and biodistribution. Sci. Rep. 2016;6:1–13.PMC485873027151839Al-Kattan A., Ryabchikov Y.V., Baati T., Chirvony V., Sánchez-Royo J.F., Sentis M., Braguer D., Timoshenko V.Y., Estève M.-A., Kabashin A.V. Ultrapure Laser-Synthesized Si Nanoparticles with Variable Oxidation States for Biomedical Applications. J. Mater. Chem. B. 2016;4:7852–7858. doi: 10.1039/C6TB02623K.10.1039/C6TB02623K32263775Popov A.A., Tselikov G., Dumas N., Berard C., Metwally K., Jones N., Al-Kattan A., Larrat B., Braguer D., Mensah S., et al. Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications. Sci. Rep. 2019;9:1194. doi: 10.1038/s41598-018-37519-1.10.1038/s41598-018-37519-1PMC636205730718560Zelepukin I.V., Popov A.A., Shipunova V.O., Tikhonowski G.V., Mirkasymov A.B., Popova-Kuznetsova E.A., Klimentov S.M., Kabashin A.V., Deyev S.M. Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Mater. Sci. Eng. C. 2020;120:111717. doi: 10.1016/j.msec.2020.111717.10.1016/j.msec.2020.11171733545869Amendola V., Scaramuzza S., Litti L., Meneghetti M., Zuccolotto G., Rosato A., Nicolato E., Marzola P., Fracasso G., Anselmi C., et al. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small. 2014;10:2476–2486. doi: 10.1002/smll.201303372.10.1002/smll.20130337224619736Scaramuzza S., Agnoli S., Amendola V. Metastable alloy nanoparticles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: Influence of the chemical environment on structure and composition. Phys. Chem. Chem. Phys. 2015;17:28076–28087. doi: 10.1039/C5CP00279F.10.1039/C5CP00279F25746398Lin F., Yang J., Lu S.-H., Niu K.-Y., Liu Y., Sun J., Du X.-W. Laser Synthesis of Gold/Oxide Nanocomposites. J. Mater. Chem. 2010;20:1103–1106. doi: 10.1039/B918945A.10.1039/B918945AJo Y.K., Wen S.-B. Formation of Core−Shell Micro/Nano Particles through Pulsed-Laser Deposition in Liquid. J. Phys. D Appl. Phys. 2013;46:035302. doi: 10.1088/0022-3727/46/3/035302.10.1088/0022-3727/46/3/035302Kutrovskaya S., Arakelian S., Kucherik A., Osipov A., Evlyukhin A., Kavokin A.V. The synthsis of hybrid gold-silicon nano particles in liquid. Sci. Rep. 2017;7:10284. doi: 10.1038/s41598-017-09634-y.10.1038/s41598-017-09634-yPMC557900728860454Jiménez E., Abderrafi K., Abargues R., Valdés J.L., Martínez-Pastor J.P. Laser-Ablation-Induced Synthesis of SiO2-Capped Noble Metal Nanoparticles in a Single Step. Langmuir. 2010;26:7458–7463.20187628Liu P., Chen H., Wang H., Yan J., Lin Z., Yang G. Fabrication of Si/Au Core/Shell Nanoplasmonic Structures with Ultrasensitive Surface-Enhanced Raman Scattering for Monolayer Molecule Detection. J. Phys. Chem. C. 2015;119:1234–1246. doi: 10.1021/jp5111482.10.1021/jp5111482Sylvestre J., Poulin S., Kabashin A.V., Sacher E., Meunier M., Luong J.H.T. Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media. J. Phys. Chem. B. 2004;108:16864–16869. doi: 10.1021/jp047134+.10.1021/jp047134+Metwally K., Mensah S., Baffou G. Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C. 2015;119:28586–28596. doi: 10.1021/acs.jpcc.5b09903.10.1021/acs.jpcc.5b09903Le R.E., Etchegoin P. Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects. Elsevier; Amsterdam, The Netherlands: 2008.Lachaine R., Boulais E., Rioux D., Boutopoulos C., Meunier M. Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation. ACS Photonics. 2016;3:2158–2169. doi: 10.1021/acsphotonics.6b00652.10.1021/acsphotonics.6b00652Moroz A. Electron mean free path in a spherical shell geometry. J. Phys. Chem. C. 2008;112:10641–10652. doi: 10.1021/jp8010074.10.1021/jp8010074Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Springer Science & Business Media; Berlin, Germany: 2013.Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. John Wiley & Sons; Hoboken, NJ, USA: 2008.Ung B., Sheng Y. Interference of surface waves in a metallic nanoslit. Opt. Express. 2007;15:1182–1190. doi: 10.1364/OE.15.001182.10.1364/OE.15.00118219532347Raschke G., Brogl S., Susha A.S., Rogach A., Klar T., Feldmann J., Fieres B., Petkov N., Bein T., Nichtl A., et al. Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett. 2004;4:1853–1857. doi: 10.1021/nl049038q.10.1021/nl049038qWestcott S.L., Oldenburg S.J., Lee R., Halas N.J. Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticles. Langmuir. 1998;14:5396–5401. doi: 10.1021/la980380q.10.1021/la980380q31416111Bailly A.-L., Correard F., Popov A., Tselikov G., Chaspoul F., Appay R., Al-Kattan A., Kabashin A.V., Braguer D., Esteve M.-A. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep. 2019;9:12890. doi: 10.1038/s41598-019-48748-3.10.1038/s41598-019-48748-3PMC673401231501470Kharin A.Y., Lysenko V.V., Rogov A., Ryabchikov Y.V., Geloen A., Tishchenko I., Marty O., Sennikov P.G., Kornev R.A., Zavestovskaya I.N., et al. Bi-Modal Nonlinear Optical Contrast from Si Nanoparticles for Cancer Theranostics. Adv. Opt. Mater. 2019;7:1801728. doi: 10.1002/adom.201801728.10.1002/adom.201801728Tamarov K.P., Osminkina L.A., Zinovyev S.V., Maximova K.A., Kargina J.V., Gongalsky M.B., Ryabchikov Y., Al-Kattan A., Sviridov A.P., Sentis M., et al. Radio Frequency Radiation-Induced Hyperthermia Using Si Nanoparticle-Based Sensitizers for Mild Cancer Therapy. Sci. Rep. 2015;4:7034. doi: 10.1038/srep07034.10.1038/srep07034PMC538268825391603Kögler M., Ryabchikov Y.V., Uusitalo S., Popov A., Popov A., Tselikov G., Välimaa A.-L., Al-Kattan A., Hiltunen J., Laitinen R., et al. Bare laser-synthesized Au-based nanoparticles as non-disturbing SERS probes for Bacteria Detection. J. Biophotonics. 2018;11:e201700225. doi: 10.1002/jbio.201700225.10.1002/jbio.20170022529388744Patskovsky S., Kabashin A.V., Meunier M., Luong J.H.T. Near-infrared surface plasmon resonance sensing on a silicon platform. Sens. Actuators B Chem. 2004;97:409–414. doi: 10.1016/j.snb.2003.09.023.10.1016/j.snb.2003.09.023Patskovsky S., Kabashin A.V., Meunier M., Luong J.H.T. Si-based surface plasmon resonance sensing with two surface plasmon polariton modes. Appl. Opt. 2003;42:6905. doi: 10.1364/AO.42.006905.10.1364/AO.42.00690514661802Liedberg B., Nylander C., Lunström I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators. 1983;4:299–304. doi: 10.1016/0250-6874(83)85036-7.10.1016/0250-6874(83)85036-7Kabashin A.V., Kochergin V.E., Nikitin P.I. Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast. Sens. Actuators B Chem. 1999;54:51–56. doi: 10.1016/S0925-4005(98)00326-8.10.1016/S0925-4005(98)00326-8Law W.C., Markowicz P., Yong K.T., Roy I., Baev A., Patskovsky S., Kabashin A.V., Ho H.P., Prasad P.N. Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Biosens. Bioelectron. 2007;23:627–632. doi: 10.1016/j.bios.2007.07.015.10.1016/j.bios.2007.07.01517804214