-negative myeloproliferative neoplasms (polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)) are infrequent blood cancers characterized by signaling aberrations. Shortly after the discovery of the somatic mutations in JAK2, MPL, and CALR that cause these diseases, researchers extensively studied the aberrant functions of their mutant products. In all three cases, the main pathogenic mechanism appears to be the constitutive activation of JAK2/STAT signaling and JAK2-related pathways (MAPK/ERK, PI3K/AKT). However, some other non-canonical aberrant mechanisms derived from mutant JAK2 and CALR have also been described. Moreover, additional somatic mutations have been identified in other genes that affect epigenetic regulation, tumor suppression, transcription regulation, splicing and other signaling pathways, leading to the modification of some disease features and adding a layer of complexity to their molecular pathogenesis. All of these factors have highlighted the wide variety of cellular processes and pathways involved in the pathogenesis of MPNs. This review presents an overview of the complex signaling behind these diseases which could explain, at least in part, their phenotypic heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956519 | PMC |
http://dx.doi.org/10.3390/cancers13050984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!