Biological aging is associated with various morphological and functional changes, yet the mechanisms of these phenomena remain unclear in many tissues and organs. Hyperlipidemia is among the factors putatively involved in the aging of the liver and heart. Here, we analyzed morphological, ultrastructural, and biochemical features in adult (7-month-old) and elderly (17-month-old) mice, and then compared age-related features between wild type (C57Bl/6 strain) and ApoE-deficient (transgenic ApoE) animals. Increased numbers of damaged mitochondria, lysosomes, and lipid depositions were observed in the hepatocytes of elderly animals. Importantly, these aging-related changes were significantly stronger in hepatocytes from ApoE-deficient animals. An increased number of damaged mitochondria was observed in the cardiomyocytes of elderly animals. However, the difference between wild type and ApoE-deficient mice was expressed in the larger size of mitochondria detected in the transgenic animals. Moreover, a few aging-related differences were noted between wild type and ApoE-deficient mice at the level of plasma biochemical markers. Levels of cholesterol and HDL increased in the plasma of elderly ApoE mice and were markedly higher than in the plasma of elderly wild type animals. On the other hand, the activity of alanine transaminase (ALT) decreased in the plasma of elderly ApoE mice and was markedly lower than in the plasma of elderly wild type animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996907 | PMC |
http://dx.doi.org/10.3390/cells10030502 | DOI Listing |
Biochemistry
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.
View Article and Find Full Text PDFPlant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFPlant Physiol
January 2025
Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R. China.
Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.
View Article and Find Full Text PDFPLoS One
January 2025
School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!