A low-temperature preparation process is significantly important for scalable and flexible devices. However, the serious interface defects between the normally used titanium dioxide (TiO) electron transport layer (ETL) obtained via a low-temperature method and perovskite suppress the further improvement of perovskite solar cells (PSCs). Here, we develop a facile low-temperature chemical bath method to prepare a TiOETL with tantalum (Ta) and niobium (Nb) co-doping. Systematic investigations indicate that Ta/Nb co-doping could increase the conduction band level of TiOand could decrease the trap-state density, boosting electron injection efficiency and reducing the charge recombination between the perovskite/ETL interface. A superior power conversion efficiency of 19.44% can be achieved by a planar PSC with a Ta/Nb co-doped TiOETL, which is much higher than that of pristine TiO(17.60%). Our achievements in this work provide new insights on low-temperature fabrication of low-cost and highly efficient PSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abeb37 | DOI Listing |
J Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Delhi, DEPRTMENT OF PHYSICS, IIT DELHI, HAUZ KHAS, New Delhi, Delhi, 110016, INDIA.
Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Center for Optoelectronics Engineering Research, School of Physics and Astronomy, Yunnan University, Kunming 650500, China.
Highly efficient single-layer organic light-emitting diodes (OLEDs) are demonstrated by using a pure Mg cathode that is seeded with a small amount of Ag nucleation sites. Bis(4-phenylthieno[3,2-]pyridinato-,C2')(acetylacetonate)iridium(III) (PO-01)-doped devices with three-, two-, and one-region doping configurations exhibit maximum external quantum efficiency (EQE) values of 22.8%, 21.
View Article and Find Full Text PDFSmall
December 2024
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
The development of highly stable and strongly active electrode materials for sodium-ion batteries (SIBs) and overall water splitting (OWS) is critical in sustainable energy storage and conversion systems. Here, a new electrode material N-Fe-C@NbCT is introduced, with a layered sandwich structure consisting of N-doping Fe-MOF derived-nanorods (Fe-C) and NbCT MXenes. Specifically, NbCT obtained by etching NbAlC with HF acid is used as the main body to construct the layered sandwich structure with Fe-C as the filler.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering, CHINA.
Porous organic polymers have shown great potential in photocatalytic CO2 reduction due to their unique tunable structure favoring gas adsorption and metal sites integration. However, efficient photocatalysis in porous polymers is greatly limited by the low surface reactivity and electron mobility of bulk structure. Herein, we incorporate TiO2 nanoparticles and Ni(II) sites into a layered cationic imidazolium polymer (IP), in which the imidazolium moieties and free anions can stabilize the key intermediates and enhance the reaction kinetics of CO2 reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!