Field studies of aluminum release and deposition in drinking water distribution systems.

Chemosphere

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: July 2021

Aluminum (Al) release and deposition in drinking water distribution systems (DWDS) are highly detrimental to tap water quality. In this study, five drinking water treatment plant supply areas in two cities of China were examined to understand the transportation stability of Al in the DWDS. The two cities were selected based on the wide disparity reported in pH and turbidity in the finished and tap water qualities, with higher fluctuation of pH (average 8.0) and turbidity (average 0.78 NTU) reported in the northern and southern cities, respectively. Results showed that hydraulic conditions such as hydraulic shock or increased flow velocity had a more significant effect on the release and deposition of particulate Al, which could be reflected by turbidity when it was greater than 0.3 NTU, since turbidity and particulate Al were significantly positively correlated. Particulate Al concentration varied by more than 140 μg/L when turbidity fluctuated within 0.45-1.67 NTU. However, when turbidity was below 0.3 NTU, the particulate Al transported stably at low concentration. pH fluctuations contributed to the change of soluble Al concentration. Even above 50 μg/L soluble Al in the finished water could transport stably in the DWDS when pH fluctuated slightly in 6.6-7.0. However, when the pH fluctuated in 7.8-8.4, the soluble Al concentration varied by more than 100 μg/L. This study provides reference indicators of turbidity and pH for identifying the risk of Al in the DWDS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130067DOI Listing

Publication Analysis

Top Keywords

release deposition
12
drinking water
12
aluminum release
8
deposition drinking
8
water distribution
8
distribution systems
8
tap water
8
ntu turbidity
8
concentration varied
8
soluble concentration
8

Similar Publications

Environmental impact of an acid-forming alum shale waste rock legacy site in Norway.

Environ Sci Process Impacts

January 2025

Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.

View Article and Find Full Text PDF

Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.

View Article and Find Full Text PDF

There are many problems in the direct combustion of biomass, such as low combustion efficiency and easy slagging. In this paper, rice husk (RH) was taken as the research object, and the effects of different washing pretreatment conditions (washing time (WTI), washing temperature (WTE), and particle size) on the combustion characteristics and ash formation characteristics were discussed. The results show that the combustion characteristics of RH were significantly coupling-affected by the WTE and WTI, and the comprehensive characteristics of volatile release were significantly coupling-affected by the particle size and WTI.

View Article and Find Full Text PDF

Periprosthetic joint infection (PJI) is a leading cause and major complication of joint replacement failure. As opposed to standard-of-care systemic antibiotic prophylaxis for PJI, we developed and tested titanium femoral intramedullary implants with titania nanotubes (TNTs) coated with the antibiotic gentamicin and slow-release agent chitosan through electrophoretic deposition (EPD) in a mouse model of PJI. We hypothesized that these implants would enable local gentamicin delivery to the implant surface and surgical site, effectively preventing bacterial colonization.

View Article and Find Full Text PDF

Diseases affecting adipose tissue (AT) function include obesity, lipodystrophy, and lipedema, among others. Both a lack of and excess AT are associated with increased risk for developing diseases including type 2 diabetes mellitus, hypertension, obstructive sleep apnea, and some types of cancer. However, individual risk of developing cardiometabolic and other 'obesity-related' diseases is not entirely determined by fat mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!