PTEN mediates serum deprivation-induced cytotoxicity in H9c2 cells via the PI3K/AKT signaling pathway.

Toxicol In Vitro

Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China. Electronic address:

Published: June 2021

The pathogenesis of acute myocardial infarction (AMI) is associated with cardiomyocyte necrosis and apoptosis. Numerous studies have determined the regulatory effects of Phosphatase and tensin homolog (PTEN) cell proliferation and apoptosis in other cell types. However, the potential role of PTEN in cardiomyocyte is unclear. In this study, we used H9c2 cells cultured under serum deprivation to simulate the apoptosis process of myocardial infarction. Small interference RNA (siRNA) of PTEN was used to knock down the expression of PTEN. Cell viability was determined by CCK-8. Cell proliferation was examined by Edu staining, and the protein expression was analyzed by Western blot. We also evaluated the generation of ROS, the degree of DNA damage, and cell apoptosis using immunofluorescence assay. As a result, we observed that serum deprivation in H9c2 cells increased PTEN expression. Functionally, the PTEN knockdown experiment using siRNA inhibited serum deprivation-induced cell apoptosis, ROS production, and DNA damage, whereas increased cell proliferation. All these effects could be reversed by phosphatidylinositol 3-kinase (PI3K) inhibitor, which indicated the PI3K/protein kinase B (AKT) might be the critical component of the PTEN effects during serum deficiency. In conclusion, our study indicated the role of the PTEN/PI3K/AKT pathway in serum deprivation-induced cytotoxicity in H9c2 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2021.105131DOI Listing

Publication Analysis

Top Keywords

h9c2 cells
16
serum deprivation-induced
12
cell proliferation
12
pten
8
deprivation-induced cytotoxicity
8
cytotoxicity h9c2
8
myocardial infarction
8
pten cell
8
serum deprivation
8
dna damage
8

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.

Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy.

View Article and Find Full Text PDF

Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.

Background/objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.

Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).

Chin J Nat Med

January 2025

Department of Pharmacy, The Fourth College of Clinical Medicine, Xinjiang Medical University, Urumqi 830000, China; Department of Pharmacy, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi 830000, China. Electronic address:

Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD.

View Article and Find Full Text PDF

ACSL4 Regulates LPS-Induced Ferroptosis in Cardiomyocytes through FASN.

Ann Clin Lab Sci

November 2024

Emergency Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China

Objective: Myocardial injury is a prevalent complication of sepsis. This study aims to shed light on the role of Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) in regulating Fatty Acid Synthase (FASN) to identify the intrinsic molecular mechanisms of sepsis-induced myocardial injury.

Method: H9c2 cells were treated with Lipopolysaccharide (LPS) to model sepsis-induced cardiomyocyte injury and were subsequently divided into seven groups: Control, LPS, LPS+sh-NC, LPS+sh-ACSL4, LPS+sh-ACSL4+Erastin, LPS+sh-ACSL4+oe-NC, and LPS+sh-ACSL4+oe-FASN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!