A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of bacterial culture medium on peptidoglycan binding of cell wall lytic enzymes. | LitMetric

Influence of bacterial culture medium on peptidoglycan binding of cell wall lytic enzymes.

J Biotechnol

Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States. Electronic address:

Published: March 2021

The bacteriolysin lysostaphin (Lst) and endolysin PlyPH are potent modular lytic enzymes with activity against clinically-relevant Gram-positive Staphylococcus aureus and Bacillus cereus, respectively. Both enzymes possess an N-terminal catalytic domain and C-terminal binding domain, with the latter conferring significant enzyme specificity. Lst and PlyPH show reduced activity in the presence of bacterial growth-supporting conditions, such as complex media. Here, we hypothesize that Lst and PlyPH bind poorly to their targets in growth media, which may influence their use in antimicrobial applications in the food industry, as therapeutics, and for control of microbial communities. To this end, binding of isolated Lst and PlyPH binding domains to target bacteria was quantified in the presence of three increasingly complex media - phosphate buffered saline (PBS), defined growth medium (AAM) and undefined complex medium (TSB) by surface plasmon resonance (SPR) and flow cytometry. Evaluation of binding kinetics by SPR demonstrated that PlyPH binding was particularly sensitive to medium composition, with 8-fold lower association and 3.4-fold lower dissociation rate constants to B. cereus in TSB compared to PBS. Flow cytometry studies indicated a decrease in the binding-dependent fluorescent populations of S. aureus and B. cereus, for lysostaphin binding domain and PlyPH binding domain, respectively, in TSB compared to PBS. Enzyme binding behavior was consistent with the enzymes' catalytic activity in the three media, thereby suggesting that compromised enzyme binding could be responsible for poor activity in more complex growth media.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2021.02.010DOI Listing

Publication Analysis

Top Keywords

binding domain
12
lst plyph
12
plyph binding
12
binding
10
lytic enzymes
8
complex media
8
growth media
8
flow cytometry
8
tsb compared
8
compared pbs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!