Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes' genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7954356 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1009221 | DOI Listing |
Sci Rep
January 2025
Institute for Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK, USA.
Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.
This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, TiO, and TiO oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel.
View Article and Find Full Text PDFNpj Nanophoton
January 2025
Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany.
We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Max Planck Institute for Microstructure Physics, Halle (Saale), Germany.
Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy MnGe as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer.
View Article and Find Full Text PDFJ Mol Biol
December 2024
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA. Electronic address:
The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!