Stochastic simulation algorithms for Interacting Particle Systems.

PLoS One

Department of Computational Medicine, University of California, Los Angeles, CA, United States of America.

Published: August 2021

Interacting Particle Systems (IPSs) are used to model spatio-temporal stochastic systems in many disparate areas of science. We design an algorithmic framework that reduces IPS simulation to simulation of well-mixed Chemical Reaction Networks (CRNs). This framework minimizes the number of associated reaction channels and decouples the computational cost of the simulations from the size of the lattice. Decoupling allows our software to make use of a wide class of techniques typically reserved for well-mixed CRNs. We implement the direct stochastic simulation algorithm in the open source programming language Julia. We also apply our algorithms to several complex spatial stochastic phenomena. including a rock-paper-scissors game, cancer growth in response to immunotherapy, and lipid oxidation dynamics. Our approach aids in standardizing mathematical models and in generating hypotheses based on concrete mechanistic behavior across a wide range of observed spatial phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924777PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247046PLOS

Publication Analysis

Top Keywords

stochastic simulation
8
interacting particle
8
particle systems
8
stochastic
4
simulation algorithms
4
algorithms interacting
4
systems interacting
4
systems ipss
4
ipss model
4
model spatio-temporal
4

Similar Publications

Advances in next-generation sequencing technology have enabled the high-throughput profiling of metagenomes and accelerated microbiome studies. Recently, there has been a rise in quantitative studies that aim to decipher the microbiome co-occurrence network and its underlying community structure based on metagenomic sequence data. Uncovering the complex microbiome community structure is essential to understanding the role of the microbiome in disease progression and susceptibility.

View Article and Find Full Text PDF

Efficient stochastic simulation of piecewise-deterministic Markov processes and its application to the Morris-Lecar model of neural dynamics.

Biol Cybern

January 2025

Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.

Piecewise-deterministic Markov processes combine continuous in time dynamics with jump events, the rates of which generally depend on the continuous variables and thus are not constants. This leads to a problem in a Monte-Carlo simulation of such a system, where, at each step, one must find the time instant of the next event. The latter is determined by an integral equation and usually is rather slow in numerical implementation.

View Article and Find Full Text PDF

Monte Carlo Simulations in Nanomedicine: Advancing Cancer Imaging and Therapy.

Nanomaterials (Basel)

January 2025

Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada.

Monte Carlo (MC) simulations have become important in advancing nanoparticle (NP)-based applications for cancer imaging and therapy. This review explores the critical role of MC simulations in modeling complex biological interactions, optimizing NP designs, and enhancing the precision of therapeutic and diagnostic strategies. Key findings highlight the ability of MC simulations to predict NP bio-distribution, radiation dosimetry, and treatment efficacy, providing a robust framework for addressing the stochastic nature of biological systems.

View Article and Find Full Text PDF

In this contribution, a methodology for the optimal tuning of controllers of complex systems based on meta-heuristic techniques is proposed. Two bio-inspired meta-heuristic optimization algorithms -the Antlion Optimizer (ALO) and the Whale Optimization Algorithm (WOA)- have been applied to two different dynamic systems: the Hoop & Ball electromechanical system, a system where a linearized description is adequate; and to a Wind Turbine-Generator-Rectifier, as an example of a complex non-linear dynamic system. The performance of the ALO and WOA techniques for the tuning of conventional PID controllers is evaluated in relation to the number of agents nS and the maximum number of iterations nMaxIter; given the stochastic nature of both methods, repeatability is also addressed.

View Article and Find Full Text PDF

In gas-to-methanol processes, optimizing multi-energy systems is a critical challenge toward efficient energy allocation. This paper proposes an entropy-based stochastic optimization method for a multi-energy system in a gas-to-methanol process, aiming to achieve optimal allocation of gas, steam, and electricity to ensure executability under modeling uncertainties. First, mechanistic models are developed for major chemical equipments, including the desulfurization, steam boilers, air separation, and syngas compressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!