Overcoming multiple biological barriers, including circulation time , tumor vascular endothelium, reticuloendothelial system (RES), extracellular matrix (ECM), etc., is the key to improve the therapeutic efficacy of drug delivery systems in treating tumors. Inspired by the ability of natural erythrocytes to cross multiple barriers, in this study, a biomimetic delivery system named NE@DOX-Ang2 was developed for enhancing the chemotherapy of breast cancer, which employed nano-erythrocyte (NE) encapsulating doxorubicin (DOX) and surface modification with a targeted angiopep-2 peptide (Ang2). NE@DOX-Ang2 enhanced the capacity to cross biological barriers in a three-dimensional (3D) tumor spheroid model and in mice. Compared with a conventional drug delivery system of liposomes, the half-life of NE@DOX-Ang2 increased approximately 2.5 times. Moreover, NE@DOX-Ang2 exhibited excellent tumor-targeting ability and antitumor effects and . Briefly, the prepared nano-erythrocyte drug carrier has features of favorable biocompatibility and low immunogenicity and the advantage of prolonging the half-life of drugs, which may provide a novel perspective for development of clinically available nanomedicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.1c00008 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.
Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
Precise and effective management of myocardial ischemia/reperfusion injury (MIRI) is still a formidable challenge in clinical practice. Additionally, real-time monitoring of drug aggregation in the MIRI region remains an open question. Herein, a drug delivery system, hesperadin and ICG assembled in PLGA-Se-Se-PEG-IMTP (HI@PSeP-IMTP), is designed to deliver hesperadin and ICG to the MIRI region for in vivo optical imaging tracking and to ameliorate MIRI.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India.
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).
View Article and Find Full Text PDFSmall
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!