The glycoprotein uromodulin (UMOD) is the most abundant protein in urine, and -glycans are critical for many biological functions of UMOD. Comprehensive glycan profiling of UMOD provides valuable information to understand the exact mechanisms of glycan-regulated functions. To perform comprehensive glycosylation analysis of UMOD from urine samples with limited volumes, we developed a streamlined workflow that included UMOD isolation from 5 mL of urine from 6 healthy adult donors (3 males and 3 females) and a glycosylation analysis using a highly sensitive and reproducible nanoLC-MS/MS based glycomics approach. In total, 212 -glycan compositions were identified from the purified UMOD, and 17% were high-mannose glycans, 2% were afucosylated/asialylated, 3% were neutral fucosylated, 28% were sialylated (with no fucose), 46% were fucosylated and sialylated, and 4% were sulfated. We found that isolation of UMOD resulted in a significant decrease in the relative quantity of high-mannose and sulfated glycans with a significant increase of neutral fucosylated glycans in the UMOD-depleted urine relative to the undepleted urine, but depletion had little impact on the sialylated glycans. To our knowledge, this is the first study to perform comprehensive -glycan profiling of UMOD using nanoLC-MS/MS. This analytical workflow would be very beneficial for studies with limited sample size, such as pediatric studies, and can be applied to larger patient cohorts not only for UMOD interrogation but also for global glycan analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.0c01053 | DOI Listing |
Front Med (Lausanne)
January 2025
Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China.
Chronic kidney disease (CKD) is closely linked to the aging process, making the identification of protein biomarkers that reflect aging in specific organs and tissues crucial for a deeper understanding of this phenomenon. This study aimed to identify potential aging-related proteins present in the urine of CKD patients. Utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic analysis, we identified a total of 1,712 proteins in the urine samples from both healthy controls and CKD patients in our discovery cohort.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Objective: The innate immune defense plays a pivotal role in protecting the urinary tract from uropathogenic invasion and maintaining immune homeostasis. Dysregulation of the innate immune system can result in recurrent urinary tract infections (RUTI) due to heightened susceptibility to uropathogens. Despite this, predicting the risk of recurrence and the degree of immune compromise in patients who have had one urinary tract infection remains challenging.
View Article and Find Full Text PDFDiabetes Care
January 2025
Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Objective: Peripheral artery disease (PAD) is a significant complication of type 2 diabetes (T2D), yet the association between plasma proteomics and PAD in people with T2D remains unclear. We aimed to explore the relationship between plasma proteomics and PAD in individuals with T2D, and assess whether proteomics could refine PAD risk prediction.
Research Design And Methods: This cohort study included 1,859 individuals with T2D from the UK Biobank.
Kidney Int Rep
December 2024
Institute of Physiology, University of Zurich, Zurich, Switzerland.
BMC Nephrol
December 2024
Wake Forest School of Medicine, Section on Nephrology, Winston-Salem, NC, 27157, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!