The microbiome of flowers (anthosphere) is an understudied compartment of the plant microbiome. Within the flower, petals represent a heterogeneous environment for microbes in terms of resources and environmental stress. Yet, little is known of drivers of structure and function of the epiphytic microbial community at the within-petal scale. We characterized the petal microbiome in two co-flowering plants that differ in the pattern of ultraviolet (UV) absorption along their petals. Bacterial communities were similar between plant hosts, with only rare phylogenetically distant species contributing to differences. The epiphyte community was highly culturable (75% of families) lending confidence in the spatially explicit isolation and characterization of bacteria. In one host, petals were heterogeneous in UV absorption along their length, and in these, there was a negative relationship between growth rate and position on the petal, as well as lower UV tolerance in strains isolated from the UV-absorbing base than from UV reflecting tip. A similar pattern was not seen in microbes isolated from a second host whose petals had uniform patterning along their length. Across strains, the variation in carbon usage and chemical tolerance followed common phylogenetic patterns. This work highlights the value of petals for spatially explicit explorations of bacteria of the anthosphere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859501PMC
http://dx.doi.org/10.1002/mbo3.1158DOI Listing

Publication Analysis

Top Keywords

spatially explicit
12
host petals
8
petals
6
explicit depiction
4
depiction floral
4
floral epiphytic
4
epiphytic bacterial
4
bacterial community
4
community reveals
4
reveals role
4

Similar Publications

High-resolution gridded dataset of China's offshore wind potential and costs under technical change.

Sci Data

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, 100084, China.

Assessing the dynamics of offshore wind potential and costs is essential for low-carbon energy policy decision-making and energy modeling, but no open-source, spatial explicit and technologically detailed dataset is available. This study addresses this gap by employing a consistent assessment framework that integrates GIS analysis, a wind reanalysis model, a component-based cost model and scenario analysis. It identifies suitable space for offshore wind deployment considering 12 technical and policy constraints, estimates hourly output curves, capacity factors, and technology cost dynamics by components across 5058 grid points with a 10 km resolution from 2020 to 2035 under three technical change scenarios.

View Article and Find Full Text PDF

Objectives: Assess the effectiveness of ring vaccination in controlling an Ebola virus outbreak in the Democratic Republic of Congo.

Methods: This analysis focuses on two areas of the Democratic Republic of Congo, Beni and Butembo/Katwa, which were affected during the 2018-2020 Ebola outbreak. To simulate Ebola virus transmission, we used a spatially explicit agent-based model with households, health care facilities, and Ebola treatment units.

View Article and Find Full Text PDF

High-Arctic environments are facing an elevated pace of warming and increasing human activities, making them more susceptible to the introduction and spread of alien species. We investigated the role of human disturbance in facilitating the spread of a native plant () in a high-Arctic natural environment close to Isfjord Radio station and along adjacent hiking trails at Kapp Linné, Svalbard. We reconstructed the spatial pattern of the arrival and spread of at Kapp Linné by combining historical records of the species occurrence (1928-2018) with a contemporary survey of the plant abundance along the main hiking trail (2023 survey) and tested the relative effects of altitude and proximity to hiking trails on the species density via a generalised linear model (GLM).

View Article and Find Full Text PDF

Number and space are inherently related. Previous research has provided evidence that numbers are aligned to a so-called "mental number line", which is malleable and affected by cultural factors mostly linked to literacy-related habits. However, preverbal humans and non-human animals also map numerosities into space, in a consistent left-to-right direction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!